Fundamental Bounds In Electromagnetism

Miloslav Čapek ${ }^{1}$, Lukáś Jelínek ${ }^{1}$, Mats Gustafsson ${ }^{2}$, and Kurt Schab ${ }^{3}$
${ }^{1}$ Department of Electromagnetic Field, Czech Technical University in Prague, Czech Republic
miloslav.capek@fel.cvut.cz
${ }^{2}$ Department of Electrical and Information Technology, Lund University, Sweden
${ }^{3}$ School of Engineering, Santa Clara University, CA, USA
June 29, 2021
ČES Seminar, Prague, Czech Republic

Outline

1. Optimal Design and Its Feasibility
2. Fundamental Bounds
3. First Attempts
4. Example: Bounds on Radiation Efficiency
5. Utilizing Integral Equations
6. Solution to QCQP Problems
7. Tightness of the Bounds

- Document available at capek.elmag.org.
- To see the graphics in motion, open this document in Adobe Reader!

Designing EM Devices. . .

Designing EM Devices...

- What is the optimal design?

Folded loop (handsets)

E-shaped patch (GPS, WLAN)

"Mag. monopoles" (PGB, HIS)

Meandered dipole (RFID)

Monopoles/PIFAs (LTE)

Designing EM Devices...

- What is the optimal design?
- Optimal design for what. . . ?

Folded loop (handsets)

E-shaped patch (GPS, WLAN)

"Mag. monopoles" (PGB, HIS)

Monopoles/PIFAs (LTE)

Designing EM Devices...

- What is the optimal design?
- Optimal design for what. . . ?
- What is the optimal performance?

Folded loop (handsets)

E-shaped patch (GPS, WLAN)

"Mag. monopoles" (PGB, HIS)

Meandered dipole
(RFID)

Monopoles/PIFAs (LTE)

Degrees of Freedom and Figure of Merits

Analysis

- Shape is given, feeding is known.
- The task is to determine EM quantities.

Analysis

Synthesis (Inverse design)

- Shape is given, feeding is known.
- The task is to determine EM quantities.
- EM behavior is specified.
- The task is to find optimal shape.

Analysis

Synthesis (Inverse design)

- Shape is given, feeding is known.
- The task is to determine EM quantities.
- EM behavior is specified.
- The task is to find optimal shape.
- Mastered.
- Plenty of circuit \& full-wave EM simulators.

Analysis

- Shape is given, feeding is known.
- The task is to determine EM quantities.
- Mastered.
- Plenty of circuit \& full-wave EM simulators.

Synthesis (Inverse design)

- EM behavior is specified.
- The task is to find optimal shape.
- Unsolved (except of rare cases).
- NP-hard/NP-complete.

Design Strategies

1. Designer's skill, experiences, and intuition.
2. Parameter sweep for predefined shapes.
3. Design libraries.
4. Local optimization (gradient-based).
5. Global optimization (heuristics).
6. Memetics, machine-learning-assisted techniques.

Design Curve

Design Curve

Design Curve

Design Curve

Fundamental Bounds

Example: Energy Extraction

Combustion

Fundamental Bounds

Example: Energy Extraction

Fundamental Bounds

Example: Energy Extraction

Combustion

Nuclear fission

Nuclear fusion

Fundamental Bounds

Example: Energy Extraction
$\frac{W}{W_{\text {bound }}} \approx 10^{-9}$

Combustion

$\frac{W}{W_{\text {bound }}} \approx 10^{-3}$

$$
\frac{W}{W_{\text {bound }}} \approx 10^{-2}
$$

Nuclear fission

Nuclear fusion

What is the physical bound on energy production from fuel with mass m ? $W_{\text {bound }}=m c^{2}$

Fundamental Bounds

Example: Energy Extraction

$$
\frac{W}{W_{\text {bound }}} \approx 10^{-9} \quad \frac{W}{W_{\text {bound }}} \approx 10^{-3} \quad \frac{W}{W_{\text {bound }}} \approx 10^{-2} \quad \frac{W}{W_{\text {bound }}}=1
$$

Combustion

Nuclear fission

Nuclear fusion

Annihilation of matter and antimatter

What is the physical bound on energy production from fuel with mass m ? $W_{\text {bound }}=m c^{2}$

Approaching Fundamental Bounds in EM - Overview

- Circuit quantities (e.g., equivalent circuits).
- Wheeler (radiation power factor, 1947)
- Chu (Q-factor, 1948)
- Fano (matching, 1950)
- Thal (Q-factor, 1978)

- Pfeiffer (radiation efficiency, 2017)

Approaching Fundamental Bounds in EM - Overview

- Circuit quantities (e.g., equivalent circuits).
- Wheeler (radiation power factor, 1947)
- Chu (Q-factor, 1948)
- Fano (matching, 1950)
- Thal (Q-factor, 1978)
- Pfeiffer (radiation efficiency, 2017)
- Field quantities (e.g., spherical harmonics).
- Harrington (gain, 1965)
- Collin and Rothschild (Q-factor, 1963)

Approaching Fundamental Bounds in EM - Overview

- Circuit quantities (e.g., equivalent circuits).
- Wheeler (radiation power factor, 1947)
- Chu (Q-factor, 1948)
- Fano (matching, 1950)
- Thal (Q-factor, 1978)
- Harrington (gain, 1958, Q/G, 1960)
- Smith (matching, 1967)
- Gustafsson et al. (2010+)

Approaching Fundamental Bounds in EM - Overview

- Circuit quantities (e.g., equivalent circuits).
- Wheeler (radiation power factor, 1947)
- Chu (Q-factor, 1948)
- Fano (matching, 1950)
- Thal (Q-factor, 1978)

- Pfeiffer (radiation efficiency, 2017)
- Field quantities (e.g., spherical harmonics).
- Harrington (gain, 1965)
- Collin and Rothschild (Q-factor, 1963)
- Source currents (e.g., eigenvalue problems).
- Uzsoky and Solymar (gain, 1955)
- Harrington (gain, 1958, Q/G, 1960)

- Smith (matching, 1967)
- Gustafsson et al. (2010+)
- Related bounds
- Shannon (capacity, 1948)

Approaching Fundamental Bounds in EM - Overview

- Circuit quantities (e.g., equivalent circuits).
- Wheeler (radiation power factor, 1947)
- Chu (Q-factor, 1948)
- Fano (matching, 1950)
- Thal (Q-factor, 1978)
- Pfeiffer (radiation efficiency, 2017)
- Field quantities (e.g., spherical harmonics).
- Harrington (gain, 1965)
- Collin and Rothschild (Q-factor, 1963)
- Source currents (e.g., eigenvalue problems).
- Uzsoky and Solymar (gain, 1955)
- Harrington (gain, 1958, Q/G, 1960)
- Smith (matching, 1967)
- Gustafsson et al. (2010+)
- Related bounds
- Shannon (capacity, 1948)

First Attempts: Directivity

What is the highest achievable directivity of an antenna?

First Attempts: Directivity

What is the highest achievable directivity of an antenna?

- It is possible to design an antenna of arbitrarily small dimensions with a directivity as high as desired ${ }^{1}$.

[^0] vol. 69, no. 19, pp. 202-204, 1922

Miloslav Capek, et al.

First Attempts: Q-factor

What is the highest achievable fractional bandwidth ${ }^{2}$ of a single-resonant antenna?

First Attempts: Q-factor

What is the highest achievable fractional bandwidth ${ }^{2}$ of a single-resonant antenna?

$$
\begin{equation*}
\mathrm{FBW}<\frac{2|\Gamma|}{Q_{\mathrm{Chu}}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
Q_{\mathrm{Chu}}=\frac{1}{2}\left(\frac{1}{(k a)^{3}}+\frac{2}{k a}\right) \tag{2}
\end{equation*}
$$

Key ingredient: Expansion of field into spherical waves.

[^1] Miloslav Ćapek, et al.

First Attempts: Away From Spheres

- Spherical waves are only suitable for spherical design regions.
- The developed bounds are relatively loose as compared to common antenna desings.

First Attempts: Away From Spheres

- Spherical waves are only suitable for spherical design regions.
- The developed bounds are relatively loose as compared to common antenna desings.

"Shape-specific" fundamental bounds ${ }^{3}$

Given a specific design region, what is the best performace we can get from a device build in this region from a given material?

[^2]
Example: Radiation Efficiency and Dissipation Factor

Radiation efficiency ${ }^{4}$:

$$
\begin{equation*}
\eta_{\mathrm{rad}}=\frac{P_{\mathrm{rad}}}{P_{\mathrm{rad}}+P_{\text {lost }}}=\frac{1}{1+\delta_{\text {lost }}} \tag{3}
\end{equation*}
$$

Dissipation factor ${ }^{5} \delta$:

$$
\delta_{\text {lost }}=\frac{P_{\text {lost }}}{P_{\mathrm{rad}}}
$$

- fraction of quadratic forms (can be scaled with resistivity model)
${ }^{4}$ 145-2013 - IEEE Standard for Definitions of Terms for Antennas, IEEE, 2014

Example: Radiation Efficiency and Dissipation Factor

Radiation efficiency ${ }^{4}$:

$$
\begin{equation*}
\eta_{\mathrm{rad}}=\frac{P_{\mathrm{rad}}}{P_{\mathrm{rad}}+P_{\mathrm{lost}}}=\frac{1}{1+\delta_{\mathrm{lost}}} \tag{3}
\end{equation*}
$$

Dissipation factor ${ }^{5} \delta$:

$$
\begin{equation*}
\delta_{\mathrm{lost}}=\frac{P_{\mathrm{lost}}}{P_{\mathrm{rad}}} \tag{4}
\end{equation*}
$$

- fraction of quadratic forms (can be scaled with resistivity model).

[^3]
Integral Operators and Their Algebraic Representation

Radiated and reactive power:

$$
P_{\mathrm{rad}}+2 \mathrm{j} \omega\left(W_{\mathrm{m}}-W_{\mathrm{e}}\right)=\frac{1}{2}\langle\boldsymbol{J}(\boldsymbol{r}), \mathcal{Z}[\boldsymbol{J}(\boldsymbol{r})]\rangle
$$

Lost power (surface resistivity model):

$$
P_{\text {lost }}=\frac{1}{2}\left\langle\boldsymbol{J}(\boldsymbol{r}), \operatorname{Re}\left\{Z_{\mathrm{s}}\right\} \boldsymbol{J}(\boldsymbol{r})\right\rangle
$$

- The same approach as with the method of moments ${ }^{6}$ (MoM)

Integral Operators and Their Algebraic Representation

Radiated and reactive power:

$$
P_{\mathrm{rad}}+2 \mathrm{j} \omega\left(W_{\mathrm{m}}-W_{\mathrm{e}}\right)=\frac{1}{2}\langle\boldsymbol{J}(\boldsymbol{r}), \mathcal{Z}[\boldsymbol{J}(\boldsymbol{r})]\rangle
$$

Lost power (surface resistivity model):

$$
P_{\text {lost }}=\frac{1}{2}\left\langle\boldsymbol{J}(\boldsymbol{r}), \operatorname{Re}\left\{Z_{\mathrm{s}}\right\} \boldsymbol{J}(\boldsymbol{r})\right\rangle
$$

- The same approach as with the method of moments ${ }^{6}$ (MoM)

$$
\boldsymbol{J}(\boldsymbol{r}) \approx \sum_{n} I_{n} \boldsymbol{\psi}_{n}(\boldsymbol{r})
$$

RWG basis function ψ_{n}.

[^4]
Algebraic Representation of Integral Operators

Radiated and reactive power

$$
\begin{equation*}
P_{\mathrm{rad}}+2 \mathrm{j} \omega\left(W_{\mathrm{m}}-W_{\mathrm{e}}\right)=\frac{1}{2}\langle\boldsymbol{J}(\boldsymbol{r}), \mathcal{Z}[\boldsymbol{J}(\boldsymbol{r})]\rangle \approx \frac{1}{2} \mathrm{I}^{\mathrm{H}} \mathrm{ZI} \tag{5}
\end{equation*}
$$

Electric Field Integral Equation ${ }^{7}$ (EFIE), $\mathbf{Z}=\left[Z_{m n}\right]$:

$$
\begin{equation*}
Z_{m n}=\int_{\Omega} \psi_{m} \cdot \mathcal{Z}\left(\psi_{n}\right) \mathrm{d} S=\mathrm{jk} Z_{0} \int_{\Omega} \int_{\Omega} \psi_{m}\left(r_{1}\right) \cdot \mathrm{G}\left(r_{1}, r_{2}\right) \cdot \psi_{n}\left(r_{2}\right) \mathrm{d} S_{1} \mathrm{~d} S_{2} \tag{6}
\end{equation*}
$$

- Dense, symmetric matrix.
- An output from PEC 2D/3D MoM code (Ansys FEKO, CST MWS, HFSS.....)

Algebraic Representation of Integral Operators

Radiated and reactive power

$$
\begin{equation*}
P_{\mathrm{rad}}+2 \mathrm{j} \omega\left(W_{\mathrm{m}}-W_{\mathrm{e}}\right)=\frac{1}{2}\langle\boldsymbol{J}(\boldsymbol{r}), \mathcal{Z}[\boldsymbol{J}(\boldsymbol{r})]\rangle \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathrm{Z} \mathbf{I} \tag{5}
\end{equation*}
$$

Electric Field Integral Equation ${ }^{7}$ (EFIE), $\mathbf{Z}=\left[Z_{m n}\right]$:

$$
\begin{equation*}
Z_{m n}=\int_{\Omega} \boldsymbol{\psi}_{m} \cdot \mathcal{Z}\left(\boldsymbol{\psi}_{n}\right) \mathrm{d} S=\mathrm{j} k Z_{0} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{m}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \cdot \boldsymbol{\psi}_{n}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{1} \mathrm{~d} S_{2} . \tag{6}
\end{equation*}
$$

- Dense, symmetric matrix.
- An output from PEC 2D/3D MoM code (Ansys FEKO, CST MWS, HFSS, ...)

[^5]
Algebraic Representation of Integral Operators

Radiated and reactive power

$$
\begin{equation*}
P_{\mathrm{rad}}+2 \mathrm{j} \omega\left(W_{\mathrm{m}}-W_{\mathrm{e}}\right)=\frac{1}{2}\langle\boldsymbol{J}(\boldsymbol{r}), \mathcal{Z}[\boldsymbol{J}(\boldsymbol{r})]\rangle \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathrm{Z} \mathbf{I} \tag{5}
\end{equation*}
$$

Electric Field Integral Equation ${ }^{7}$ (EFIE), $\mathbf{Z}=\left[Z_{m n}\right]$:

$$
\begin{equation*}
Z_{m n}=\int_{\Omega} \boldsymbol{\psi}_{m} \cdot \mathcal{Z}\left(\boldsymbol{\psi}_{n}\right) \mathrm{d} S=\mathrm{j} k Z_{0} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{m}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \cdot \boldsymbol{\psi}_{n}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{1} \mathrm{~d} S_{2} . \tag{6}
\end{equation*}
$$

- Dense, symmetric matrix.
- An output from PEC 2D/3D MoM code (Ansys FEKO, CST MWS, HFSS,....).

[^6]
Algebraic Representation of Integral Operators

Lost power

$$
\begin{equation*}
P_{\text {lost }}=\frac{1}{2}\left\langle\boldsymbol{J}(\boldsymbol{r}), \operatorname{Re}\left\{Z_{\mathrm{s}}\right\}[\boldsymbol{J}(\boldsymbol{r})]\right\rangle \tag{7}
\end{equation*}
$$

Algebraic Representation of Integral Operators

Lost power

$$
\begin{gather*}
P_{\text {lost }}=\frac{1}{2}\left\langle\boldsymbol{J}(\boldsymbol{r}), \operatorname{Re}\left\{Z_{\mathrm{s}}\right\}[\boldsymbol{J}(\boldsymbol{r})]\right\rangle \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{L} \mathbf{I} \tag{7}\\
L_{m n}=\int_{\Omega} \boldsymbol{\psi}_{m} \cdot \boldsymbol{\psi}_{n} \mathrm{~d} S \tag{8}
\end{gather*}
$$

Surface resistivity model:

$$
\begin{equation*}
Z_{\mathrm{s}}=\frac{1+\mathrm{j}}{\sigma \delta} \tag{9}
\end{equation*}
$$

with skin depth $\delta=\sqrt{2 / \omega \mu_{0} \sigma}$.

Algebraic Representation of Integral Operators

Lost power

$$
\begin{gather*}
P_{\text {lost }}=\frac{1}{2}\left\langle\boldsymbol{J}(\boldsymbol{r}), \operatorname{Re}\left\{Z_{\mathrm{s}}\right\}[\boldsymbol{J}(\boldsymbol{r})]\right\rangle \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{L} \mathbf{I} \tag{7}\\
L_{m n}=\int_{\Omega} \psi_{m} \cdot \boldsymbol{\psi}_{n} \mathrm{~d} S \tag{8}
\end{gather*}
$$

Surface resistivity model:

$$
\begin{equation*}
Z_{\mathrm{s}}=\frac{1+\mathrm{j}}{\sigma \delta} \tag{9}
\end{equation*}
$$

with skin depth $\delta=\sqrt{2 / \omega \mu_{0} \sigma}$.

- Sparse matrix (diagonal for non-overlapping functions $\left\{\boldsymbol{\psi}_{m}(\boldsymbol{r})\right\}$).
- The entries $L_{m n}$ are known analytically.

A Note: MoM Solution \times Current Impressed in Vacuum

MoM solution

Solution to $\mathbf{I}=\mathbf{Z}^{-1} \mathbf{V}$ for an incident plane wave.

A current can be chosen completely freely, only the excitation $\mathbf{V}=\mathbf{Z I}$ may not be realizable.

A Note: MoM Solution \times Current Impressed in Vacuum

MoM solution

Current impressed in vacuum

Solution to $\mathbf{X I}_{i}=\lambda_{i} \mathbf{R} \mathbf{I}_{i}$ (the first inductive mode).

A current can be chosen completely freely, only the excitation $\mathbf{V}=\mathbf{Z I}$ may not be realizable.

Fundamental Bounds as QCQP Problems

- Having quadratic forms for the physical quantities, the antenna metrics may be optimized.

Maximum radiation efficiency

Problem \mathcal{P}_{1} :

Maximum self-resonant radiation efficiency
Problem \mathcal{P}_{2} :

$$
\begin{array}{ll}
\operatorname{minimize} & P_{\text {loss }} \\
\text { subject to } & P_{\mathrm{rad}}=1 \\
& \omega\left(W_{\mathrm{m}}-W_{\mathrm{e}}\right)=0
\end{array}
$$

Fundamental Bounds as QCQP Problems

- Having quadratic forms for the physical quantities, the antenna metrics may be optimized.
- The problems \mathcal{P}_{1} and \mathcal{P}_{2} are quadratically constrained quadratic programs ${ }^{8}$ (QCQP).

Maximum radiation efficiency

Problem \mathcal{P}_{1} :

Maximum self-resonant radiation efficiency
Problem \mathcal{P}_{2} :

[^7] Press, 2004

Solution to Radiation Efficiency Bound (\mathcal{P}_{1})

Lagrangian reads

$$
\begin{equation*}
\mathcal{L}(\lambda, \mathbf{I})=\mathbf{I}^{\mathrm{H}} \mathbf{L I}-\lambda\left(\mathbf{I}^{\mathrm{H}} \mathbf{R I}-1\right) . \tag{10}
\end{equation*}
$$

Stationary points

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{I}^{\mathrm{H}}}=\mathbf{L I}-\lambda \mathbf{R I}=0
$$

are solution to generalized eigenvalue problem (GEP)
\qquad
Substituting a discrete set of stationary points $\left\{\mathbf{I}_{i}, \lambda_{i}\right\}$ back to (10) and minimizing gives
\qquad

Solution to Radiation Efficiency Bound (\mathcal{P}_{1})

Lagrangian reads

$$
\begin{equation*}
\mathcal{L}(\lambda, \mathbf{I})=\mathbf{I}^{\mathrm{H}} \mathbf{L I}-\lambda\left(\mathbf{I}^{\mathrm{H}} \mathbf{R I}-1\right) . \tag{10}
\end{equation*}
$$

Stationary points

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \mathbf{I}^{\mathrm{H}}}=\mathbf{L I}-\lambda \mathbf{R I}=0 \tag{11}
\end{equation*}
$$

are solution to generalized eigenvalue problem (GEP):

$$
\begin{equation*}
\mathbf{L I}_{i}=\lambda_{i} \mathbf{R I}_{i} . \tag{12}
\end{equation*}
$$

Substituting a discrete set of stationary points $\left\{\mathbf{I}_{i}, \lambda_{i}\right\}$ back to (10) and minimizing gives

Solution to Radiation Efficiency Bound (\mathcal{P}_{1})

Lagrangian reads

$$
\begin{equation*}
\mathcal{L}(\lambda, \mathbf{I})=\mathbf{I}^{\mathrm{H}} \mathbf{L I}-\lambda\left(\mathbf{I}^{\mathrm{H}} \mathbf{R I}-1\right) . \tag{10}
\end{equation*}
$$

Stationary points

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \mathbf{I}^{\mathrm{H}}}=\mathbf{L I}-\lambda \mathbf{R I}=0 \tag{11}
\end{equation*}
$$

are solution to generalized eigenvalue problem (GEP):

$$
\begin{equation*}
\mathbf{L I}_{i}=\lambda_{i} \mathbf{R I}_{i} . \tag{12}
\end{equation*}
$$

Substituting a discrete set of stationary points $\left\{\mathbf{I}_{i}, \lambda_{i}\right\}$ back to (10) and minimizing gives

$$
\begin{equation*}
\min _{\left\{\mathbf{I}_{i}\right\}} \mathcal{L}(\lambda, \mathbf{I})=\lambda_{1} \tag{13}
\end{equation*}
$$

Example: Radiation Efficiency Bound of an L-plate (\mathcal{P}_{1})

 $k a=1, R_{\mathrm{s}}=0.01 \Omega / \square$.

Optimal current (1st mode), $Z_{0} / R_{\mathrm{S}}(k a)^{2} \delta_{\text {loss }}=17.6$.

Example: Radiation Efficiency Bound of an L-plate (\mathcal{P}_{1}) $k a=1, R_{\mathrm{s}}=0.01 \Omega / \square$.

Optimal current (1st mode), $Z_{0} / R_{\mathrm{s}}(k a)^{2} \delta_{\text {loss }}=17.6$.

The 2 nd current mode, $Z_{0} / R_{\mathrm{S}}(k a)^{2} \delta_{\text {loss }}=19.2$.

- Constant current has the lowest ohmic losses compared to its radiation.

Example: Radiation Efficiency Bound of an L-plate (\mathcal{P}_{1})

 $k a=1, R_{\mathrm{s}}=0.01 \Omega / \square$.

Optimal current (1st mode), $Z_{0} / R_{\mathrm{s}}(k a)^{2} \delta_{\text {loss }}=17.6$.

The 2 nd current mode, $Z_{0} / R_{\mathrm{S}}(k a)^{2} \delta_{\text {loss }}=19.2$.

- Constant current has the lowest ohmic losses compared to its radiation.
- Clearly, such current is not realizable (and singular on the boundary).

Solution to Self-Resonant Radiation Efficiency Bound (\mathcal{P}_{2})

The same solving procedure ${ }^{9}$ as with problem \mathcal{P}_{1}, two Lagrange multipliers, however:

$$
\begin{equation*}
\mathcal{L}\left(\lambda_{1}, \lambda_{2}, \mathbf{I}\right)=\mathbf{I}^{\mathrm{H}} \mathbf{L I}-\lambda_{1}\left(\mathbf{I}^{\mathrm{H}} \mathbf{R I}-1\right)-\lambda_{2} \mathbf{I}^{\mathrm{H}} \mathbf{X I} . \tag{14}
\end{equation*}
$$

Stationary points

[^8]
Solution to Self-Resonant Radiation Efficiency Bound (\mathcal{P}_{2})

The same solving procedure ${ }^{9}$ as with problem \mathcal{P}_{1}, two Lagrange multipliers, however:

$$
\begin{equation*}
\mathcal{L}\left(\lambda_{1}, \lambda_{2}, \mathbf{I}\right)=\mathbf{I}^{\mathrm{H}} \mathbf{L I}-\lambda_{1}\left(\mathbf{I}^{\mathrm{H}} \mathbf{R I}-1\right)-\lambda_{2} \mathbf{I}^{\mathrm{H}} \mathbf{X I} . \tag{14}
\end{equation*}
$$

Stationary points

$$
\begin{equation*}
\left(\mathbf{L}-\lambda_{2} \mathbf{X}\right) \mathbf{I}_{i}=\lambda_{1, i} \mathbf{R} \mathbf{I}_{i} \tag{15}
\end{equation*}
$$

[^9]
Example: Optimal Currents for L-Shape Plate ($\left.\mathcal{P}_{1} \& \mathcal{P}_{2}\right)$

 $k a=1, R_{\mathrm{s}}=0.01 \Omega / \square$.

Optimal current for \mathcal{P}_{1},
$Z_{0} / R_{\mathrm{S}}(k a)^{2} \delta_{\text {loss }}=17.6$.

Optimal current for \mathcal{P}_{2}, $Z_{0} / R_{\mathrm{s}}(k a)^{4} \delta_{\text {loss }}=52.3$.

Example: Optimal Currents for L-Shape Plate ($\left.\mathcal{P}_{1} \& \mathcal{P}_{2}\right)$

 $k a=1, R_{\mathrm{s}}=0.01 \Omega / \square$.

Optimal current for \mathcal{P}_{1},
$Z_{0} / R_{\mathrm{s}}(k a)^{2} \delta_{\text {loss }}=17.6$.

Optimal current for \mathcal{P}_{2}, $Z_{0} / R_{\mathrm{S}}(k a)^{4} \delta_{\text {loss }}=52.3$.

The same approach may be applied for any representation of the integral operators.

- Surface MoM, separable bodies, volumetric MoM, hybrid integral methods.

Trade-off Between Antenna Metrics

Example: Radiation efficiency vs. antenna bandwidth ${ }^{10}$, $k a=1 / 2, R_{\mathrm{s}}=1 \Omega / \square$

[^10]
TARC Minimization

Total active reflection coefficient (TARC)

$$
\begin{equation*}
\Gamma^{\mathrm{t}}=\sqrt{1-\frac{P_{\mathrm{rad}}}{P_{\mathrm{in}}}}=\sqrt{1-\frac{\mathbf{v}^{\mathrm{H}} \mathbf{g}_{0} \mathbf{v}}{\mathbf{v}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}} \mathbf{v}}} \tag{16}
\end{equation*}
$$

is to be minimized with QCQP^{11} :

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{v}^{\mathrm{H}} \mathbf{g}_{0} \mathbf{v} \\
\text { subject to } & \mathbf{v}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}} \mathbf{v}=1 \tag{17}
\end{array}
$$

${ }^{11}$ M. Capek, L. Jelinek, and M. Masek, "Finding optimal total active reflection coefficient and realized gain for multi-port lossy antennas," IEEE Transactions on Antennas and Propagation, 2021, early access

TARC Minimization

Total active reflection coefficient (TARC)

$$
\begin{equation*}
\Gamma^{\mathrm{t}}=\sqrt{1-\frac{P_{\mathrm{rad}}}{P_{\mathrm{in}}}}=\sqrt{1-\frac{\mathbf{v}^{\mathrm{H}} \mathbf{g}_{0} \mathbf{v}}{\mathbf{v}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}} \mathbf{v}}} \tag{16}
\end{equation*}
$$

is to be minimized with QCQP^{11} :

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{v}^{\mathrm{H}} \mathbf{g}_{0} \mathbf{v} \\
\text { subject to } & \mathbf{v}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}} \mathbf{v}=1 \tag{17}
\end{array}
$$

Various levels of complexity:

- optimal excitation of ports,
- optimal placement of ports,

[^11]
TARC Minimization

Total active reflection coefficient (TARC)

$$
\begin{equation*}
\Gamma^{\mathrm{t}}=\sqrt{1-\frac{P_{\mathrm{rad}}}{P_{\mathrm{in}}}}=\sqrt{1-\frac{\mathbf{v}^{\mathrm{H}} \mathbf{g}_{0} \mathbf{v}}{\mathbf{v}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}}^{\mathrm{H}} \mathbf{k}_{\mathrm{i}} \mathbf{v}}} \tag{16}
\end{equation*}
$$

is to be minimized with QCQP^{11} :

$$
\begin{array}{ll}
\text { maximize } & \mathbf{v}^{\mathrm{H}} \mathbf{g}_{0} \mathbf{v} \\
\text { subject to } & \mathbf{v}^{\mathrm{H}} \mathbf{k}_{\mathbf{i}}^{\mathrm{H}} \mathbf{k}_{\mathbf{i}} \mathbf{v}=1 \tag{17}
\end{array}
$$

Various levels of complexity:

- optimal excitation of ports,
- optimal number of ports,
- optimal placement of ports,

[^12]
Shapes Known to Be Optimal (In Certain Sense)

Radiation Q-factor ${ }^{12}$

(a)

(b)

Possible parametrization (unknowns: $s, w, i . e .$, number of meanders).

[^13] no. 4, pp. 19-29, 2019

Shapes Known to Be Optimal (In Certain Sense)

Radiation Q-factor ${ }^{12}$

Q-factor of meanderline antennas compared to the bound.

[^14] no. 4, pp. 19-29, 2019

Shapes Known to Be Optimal (In Certain Sense)

Cloaking efficiency (extinction cross section)

A (fixed) rod over a slab (optimized).

Shapes Known to Be Optimal (In Certain Sense)

Cloaking efficiency (extinction cross section)

A (fixed) rod over a slab (optimized).

Cloaking efficiency of optimized slabs compared to the bound $\eta_{\mathrm{cloak}}^{\mathrm{ub}}$.

Conclusion

Bounds (QCQP)

- Help us to understand principal limits.
- We know when to stop with the design procedure.
- Applicable to arbitrarily shaped bodies.
- Inhomogeneous materials, combined metrics, trade-offs.
- Supports constraints on input impedance, complex power, directional constraints, polarization, etc.
- Sometimes directly realizable (port-modes).

Future

- Other metrics and their bounds.
- So far only single-frequency.
- Piecewise constraints (local power conservation).

Questions?

Miloslav Čapek
miloslav.capek@fel.cvut.cz

June 29, 2021
ČES Seminar, Prague, Czech Republic version 1.0, last edit: June 28, 2021
The presentation is downloadable at \quad capek.elmag.org

[^0]: ${ }^{4}$ C. W. Oseen, "Die Einsteinsche Nadelstichstrahlung und die Maxwellschen Gleichungen," Ann. Phys.,

[^1]: ${ }^{5}$ L. J. Chu, "Physical limitations of omni-directional antennas," J. Appl. Phys., vol. 19, pp. 1163-1175, 1948

[^2]: ${ }^{5}$ M. Uzsoky and L. Solymár, "Theory of super-directive linear arrays," Acta Physica Academiae Scientiarum Hungaricae, vol. 6, no. 2, pp. 185-205, 1956
 R. F. Harrington, "Antenna excitation for maximum gain," IEEE Trans. Antennas Propag., vol. 13, no. 6, pp. 896-903, 1965

[^3]: ${ }^{4}$ 145-2013 - IEEE Standard for Definitions of Terms for Antennas, IEEE, 2014
 ${ }^{5}$ R. F. Harrington, "Effect of antenna size on gain, bandwidth, and efficiency," J. Res. Nat. Bur. Stand., vol. 64-D, pp. 1-12, 1960

[^4]: ${ }^{6}$ R. F. Harrington, Field Computation by Moment Methods. Piscataway, New Jersey, United States: Wiley IEEE Press, 1993

[^5]: ${ }^{7}$ W. C. Chew, M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan \& Claypool, 2009

[^6]: ${ }^{7}$ W. C. Chew, M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan \& Claypool, 2009

[^7]: ${ }^{8}$ S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, Great Britain: Cambridge University

[^8]: ${ }^{9}$ M. Gustafsson and M. Capek, "Maximum gain, effective area, and directivity," IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. $5282-5293,2019$

[^9]: ${ }^{9}$ M. Gustafsson and M. Capek, "Maximum gain, effective area, and directivity," IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. $5282-5293,2019$

[^10]: ${ }^{10}$ M. Gustafsson, M. Capek, and K. Schab, "Tradeoff between antenna efficiency and Q-factor," IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2482-2493, 2019

[^11]: ${ }^{11}$ M. Capek, L. Jelinek, and M. Masek, "Finding optimal total active reflection coefficient and realized gain for multi-port lossy antennas," IEEE Transactions on Antennas and Propagation, 2021, early access

[^12]: ${ }^{11}$ M. Capek, L. Jelinek, and M. Masek, "Finding optimal total active reflection coefficient and realized gain for multi-port lossy antennas," IEEE Transactions on Antennas and Propagation, 2021, early access

[^13]: ${ }^{12}$ M. Capek, L. Jelinek, K. Schab, et al., "Optimal planar electric dipole antennas: Searching for antennas reaching the fundamental bounds on selected metrics," IEEE Antennas and Propagation Magazine, vol. 61,

[^14]: ${ }^{12}$ M. Capek, L. Jelinek, K. Schab, et al., "Optimal planar electric dipole antennas: Searching for antennas reaching the fundamental bounds on selected metrics," IEEE Antennas and Propagation Magazine, vol. 61,

