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Topology Optimization

Topology Optimization as Inverse Design Problem
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Topology Optimization

Topology Optimization as Inverse Design Problem @
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» shape optimization x topology optimization
» NP hard problem (unsolvable in its entirety)

» synthesis of beam-steering arrays, optimal antennas, metasurfaces, and more. . .
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Topology Optimizatio

Contemporary Approaches

Local methods (e.g., adjoint method) Global methods, (e.g., heuristics)

» deterministic » robust
» fast convergence » prevent stacking in local minima
» does always “the best” move » maintain diversity
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Contemporary Approaches

Local methods (e.g., adjoint method) Global methods, (e.g., heuristics)
» deterministic » robust
» fast convergence » prevent stacking in local minima
» does always “the best” move » maintain diversity

Topology optimization of a bowtiel. Antenna design with genetic algorithm?2.

1S. Liu, Q. Wang, and R. Gao, “MoM-based topology optimization method for planar metallic antenna
design,” Acta Mechanica Sinica, vol. 32, no. 6, pp. 1058-1064, 2016. boI: 10.1007/s10409-016-0584-0

2M. Cismasu and M. Gustafsson, “Antenna bandwidth optimization with single frequency simulation,”
IEEE Trans. Antennas Propag., vol. 62, no. 3, pp. 1304-1311, 2014
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Memetic Scheme

Memetic Approach — Future of Antenna Design? %

Evaluating all local perturbations of the MoM model. . .

» Local step: fast detection of local minima.

» Global step: operates in local minima subspace only.
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Memetic Scheme

Memetic Approach — Future of Antenna Design? Wg

Evaluating all local perturbations of the MoM model. . .

» Local step: fast detection of local minima.

» Global step: operates in local minima subspace only.

Properties:

» fast, versatile, and full-wave,

» removes disadvantages of the
existing methods,

» generates big data,

» combination of metrics,
multi-frequency, multi-port.

®ee fccder =—— 7, > 0: to retain = 7, < 0: to remove

Topology sensitivities as seen during the optimization.
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Memetic Scheme

Novel Local Approach Based on Exact Re-analysis
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Memetic Scheme

Local, Inversion-Free, and Gradient-Based Update

[ ] metal [ ] vacuum [ ] fixed == good to keep == good to change
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» The worst element always updated.
» No gray elements (like in adjoint formulation).

» Combinatorial problem solved in a local sense.

Method-of-Mom:
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For further details.

Memetic Scheme for Inverse Design Using Exact
Reanalysis of Method-of-Moments Models
Part 1: Theory and Implementation

Miloslav Capek, Senior Member; IEEE, Lukas Jelinek, Petr Kadlec, and Mats Gustafsson, Senior Member, IEEE
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ducratztion ekl g wathod of momenes fo th sho

ptimization of radiation devices . The formulation
s discrete and solves the ulu.lu.llwmblnalurl»l iem. Fived

discretization provides an in reanalysibased
cvaluation of the smalket topology perturbations. The fed
arid also allows to precalculate all expensive evaluations prior
1o the optimization. Local greedy-based structural updates are
combined with lobal beuristic step, resulting apid

comerying and obust

aleortim applc
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Thanks to the discrete formulation,
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1. INTRODUCTION
HAPE optimization is & long-lasting subject of study in
electromagnetism. This is particularly true for antenn:

design [1], the art of crafting and shaping the material to

modify electric current paths and dislocse e lecomagnetc

(EM) sources so that they :ad|a|e effect

s pre N propo: posed and met with
mived Suctess rangig from umple parametric sweeps to
versatile heuristic algorithms [3] (o powerful topology op-
timization [4]. All these methods embody serious practical
weaknesses, mainly due to the NP-hard problems faced (5]

“The specific formulation of shape optimization also strongly
depends on a numerical method utilized to quantify the EM
nteraction [7]. For example, topology optimization stemming
from mechanical engineering is best prepared for the finite el-
ement method (FEM) [8], although some attempts to transpose
its advantages into the finite-difference time-domain method
(EDTD) [9] or method of moments (MoM) paradigm [10] are
reported. The same is true for sensitivity analysis and gradient-
based local optimization [11]. 9] which benefit from FEM
formulation.

Another cxzmplc i pixeling techniques [12
ered by genelic algorithms [12] which most commonly uses
MoM |mpedam,e matrices [13], coding each discretization
element (simplex “pixels”) as one binary unknown that is
enabled (the pixel is made from a given material) or disabled
(the pixel is made from the vacuum). The link o MoM
becomes even more pronounced when discretization elements
and EM unknowns are the optimization variables. i.e.. the
degrees-of-freedom (DOF) for solving the EM problems are
identical to those used for optimization. Then, the solver

M can be inserted inside the optimizer, making it possible
10 accelerate the solution of the EM problem during the
optimization [14].

Apart from the methods discussed above, a broad
of design paradigms utilizes parametric sweeps. surrogate
models [15], [16]. or design libraries [17]. These tools are
efficient as long as a device’s shape is predetermined by a
set of parameters, i.e., a designer has a clear idea of its
topology. Then, the task is to optimize a set of continuous
design parameters for which modern tools, such as machine

pically pow-

Part 1, https://arxiv.org/abs/2110.08044
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Memetic Scheme for Inverse Design Using an
Exact Reanalysis of Method-of-Moments Models —
Part 2: Examples and Properties

Miloslav Capek, Semior Member; IEEE, Lukas Jelinek, Petr Kadlec, and Mats Gustafsson, Senior Member, IEEE
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INTRODUCTION
NVERSE design (shape optimization) is a time-consuming
process with no certainty regarding global minimum feasi-

bility [1]. This is always the case, no matter how sophisticated

the method employed (2], (3], (4], [S]. [6]. (7], (8], 9]

There is no theoretical proof of convergence of the shape

optimization problem towards the global minimum (2], [3].

ver, the global minimum is typically not needed in

practice. A sufficiently good solution has to be found in a

reasonable time. As such. a good balance between detailed

local search and large-scale exploration of the solution space
has to be achieved [10]. These properties are provided by

the annrnach intenduced in Dart 1 111

which Tave down the

Part 2, https://arxiv.

Tocal step was proposed in [12], where only DOF removals
were used to detect the local minima. The approach was ex-
tended by the possibility of adding DOF to the system in [13].
Satisfactory performance of the local step was confirmed on
Q-factor minimization [13], as well as on the minimization of
reflectance of a pixel antenna [14]. Part 1 [11] merged both
smallest perturbations (addition and removal of DOF) into @
unified framework and combined it with the global step.

Since a fixed discretization grid is used. the differences cal-
culated from the change of the objective function value under
the smallest topology perturbations (topology sensitivites) rep-
resent a discrete analogue to gradient over structural variables.
As with gradient-based convex optimization schemes, these
differences are used to search for a local minimum via an
iterative greedy scarch [15].

The global step is designed to restore and maintain diversity
when the local minima are found by the local step. Therefore,
a heuristics known for its robustness is adopted [16], [17] in
the form of a genetic algorithm operating over locally optimal
shapes. The binary nature of genetics suits the combinatorial-
type optimization solved in this work. While heuristics do not,
in general, perform well [18]. only good propertics, including
versatility, robustess and easy implementation, are used here

Toc
cases, only the local step is needed to identify shapes good
enough for practical purposes. The above-mentioned proper-
ties and claims are confirmed in this paper using four examples
involving electrically small and medium-size problems. Both

org/abs/2110.13460
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Exampl

Example #1: Maximal Bandwidth (RWG surface code)
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Examples

Example #2: Lensing Problem (2D code, transversal F, field) @%

er = 3 — 0.06j, N = 8000, t ~ 1hour, sym. used.

Miloslav Capek, et al. Method-of-Moments-Based Memetics for Inverse Design
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Examples

Example #2: Lensing Problem (2D code, transversal F, field) %@

Porig/Pab = 0.66 vs. Poptim/Pabn = 0.80.

Miloslav Capek, et al. Method-of-Moment ed Memetics for Inverse Design
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Regularity

Left to right: this talk (memetics), genetic algorithms (pixeling), topology optimization (adjoint formulation).
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Regularity — Geometrical Operators in MoM

Regularity %‘?

Left to right: this talk (memetics), genetic algorithms (pixeling), topology optimization (adjoint formulation).

» What is regular? How to measure regularity?
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Regularity — Geometrical Oper in MoM

Shape Representation and Graph Theory @

1. A map between material elements (discretization)
and degrees of freedom (basis functions).

-
©
-
=

ti=[110100111011]"
gi=[1110010001101]"
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Regularity — Geometrical Oper in MoM

Shape Representation and Graph Theory @

1. A map between material elements (discretization)
and degrees of freedom (basis functions).

2. Incidence matrix M (graph theory).

-
©
-
=

ti=[110100111011]"
gi=[1110010001101]"
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Regularity — Geometrical Oper in MoM

Shape Representation and Graph Theory @

1100...0
1. A map between material elements (discretization) 0111 0
and degrees of freedom (basis functions). M—l0000 o0
2. Incidence matrix M (graph theory).
0000 1
8 10 12
7 9 11
2 4 6
1 3 5

T
t;i=[110100111011]
g;=[1110010001101]"

Miloslav Capek, et al. Method-of-Moment ed Memetics for Inverse Design


https://www.cvut.cz/en

Regularity — Geometrical Operators in MoM

Relative Area Spanned by a Device %

We usually want as small device as possible.

A
» Area spanned by the metalization:
A(g;) = a"t; = a" B(Mg;).
ayel = 0.03 Qpel = 1
Qyrel = 0.81
el = 0.66 arel = 0.53

a: vector of element areas/volumes
B(-): Boolean operator (nonzeros — 1, 0 — 0)

Miloslav Capek, et al. Method-of-Moment ed Memetics for Inverse Design
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Regularity — Geometrical Operators in MoM

Shape Regularity

We usually want as regular shape as possible.

» Regularity of the shape

Treg(g;) =1 — % Hgo - Qﬁgi D
where adjacency matrix is
H = BM"M)
and
~ h; h; hy 17

H=|——— ... ceh m—
[l [l bl

N: number of DOF's

Miloslav Capek, et al. Method-of-M

g
Treg = 0.02
Treg = 0.23
Frog = 0.3 Prog = 0.25

ed Memetics for Inverse Design
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Regularity — Geometrical Operators in MoM

Performance x Appearance Trade-off %

Bandwidth Maximization vs. Tuning

» 7-10* shapes/s (PC)
» 8-10° shapes/s (cluster) Qant

TM
b

p(Ii) = Qant + anxt

15 p(I;)
f(Iiygi) = —Fv T 6arel(gi) + 'Vrreg(gi)
1.4 Ib
1.38 ¢
a=144 °
1.2 o
a=0.53 a = 0.690

. @ .O ° o cht

1.1 (}7()21(1:016 iI\bM
» ka=1/2, PEC, N = 414 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Regularity — Geometrical Oper in MoM

Performance x Appearance Trade-off %

Bandwidth Maximization vs. Tuning

» 7-10* shapes/s (PC)

» 8-10° shapes/s (cluster) Q;rlt;c[ B=0 B=015
1b ¥y=0 v=05
N-D e =
o o
1.5

14 o G

o =1.07 o
1.1
138 ¢ a1l 006
] 8 u o
a—=144 © a=0091"
1.2 ©o R = 0.64d"
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a =053 a=06%0 " Em mm 07
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Regularity — Geometrical Oper in MoM

Performance x Appearance Trade-off %

Bandwidth Maximization vs. Tuning

» 7-10* shapes/s (PC) A >
DD
» 8-10° shapes/s (cluster) Qant 4 PN 5-08=015
™ || S S S - -
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Regularity — Geometrical Operators in MoM

Penalization for Asymmetry Wg

Reflection along y-z plane.

‘ Point group symmetry operation R is
X ' & N
KX »“»"‘: = Z Cmn (R) 1/)71 (T) .
n=1
_ Symmetricity rgym € [0, 1] penalization
& . e Tsym(R, g) H|C(R)g| —9H1~
PN < Pareto-type optimization:
RS | IR 2
NP v ( K R f(g):p(l(g))erTsym(g)-
) XK AKXPE X XK K K
A N US| ISEISENR ANYED ,JT‘

Method-of-Moment ed Memetics for Inverse D
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Concluding Remarks

Geometrical and topological operators

» Powerful and versatile concept.

» Able to deliver manufacture-friendly designs.

» Trade-off between performance and regularity.

» Open ways to combine physics and geometry.

Miloslav C
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Concluding Remarks

Geometrical and topological operators

» Powerful and versatile concept.
» Able to deliver manufacture-friendly designs.
» Trade-off between performance and regularity.

» Open ways to combine physics and geometry.

Topics of ongoing research

» Synthesis of linear operators.
» What is the best choice of the global scheme?
» What is the best local update strategy?

» Metaparameters have crucial impact on
performance.

Miloslav C
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d Meme
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Questions?

Miloslav Capek
miloslav.capek@fel.cvut.cz

November 23, 2021
version 1.2

The presentation is available at i t———.
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Optimization settings, Ngip = 4.
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Optimization settings, Ngip = 4.

Miloslav Capek, et al.

Questions

Example #3: Maximal Realized Gain

20 |

15
<}
10
5 &
0.5 5.5

Ndip = 3: 1 - 9 kd
Nap =4 11 o
Ngip = 5 | kd

Fundamental bounds (dashed
Method-of-Momen d

), realized antennas (solid).
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