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Czech Technical University in Prague

Established in 1707 as the first non-military technical university in Europe.

▶ From 12 students in 1707 to more than 20 000 students around 2020.

Left: Prague; right: CTU, Faculty of Electrical Engineering (one of eight faculties).

You are welcome to visit us in Prague!
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Current Density Bounds

Current Density Bounds

▶ Draw whatever current you want to extremize
a given metric f(I).

minimize
I

f(I)

subject to gi(I) ≤ ci

▶ Typically QCQP (or SDP).

▶ Full quadratic forms . . .

▶ Substructures, port modes, . . .
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Current Density Bounds

Current Density Bounds

▶ Advanced for many scalar metrics, e.g.,

▶ Q-factor1 (bandwidth),
▶ gain2,
▶ scattering3,
▶ optics4,
▶ realized gain5,
▶ trade-offs6,
▶ . . .

1M. Capek, M. Gustafsson, and K. Schab, “Minimization of antenna quality factor,” IEEE Trans. Antennas
Propag., vol. 65, no. 8, pp. 4115–4123, 2017. doi: 10.1109/TAP.2017.2717478

2M. Gustafsson and M. Capek, “Maximum gain, effective area, and directivity,” IEEE Trans. Antennas
Propag., vol. 67, no. 8, pp. 5282 –5293, 2019. doi: 10.1109/TAP.2019.2916760

3M. Gustafsson, K. Schab, L. Jelinek, et al., “Upper bounds on absorption and scattering,” New Journal of
Physics, vol. 22, no. 7, p. 073 013, 2020. doi: 10.1088/1367-2630/ab83d3

4K. Schab, L. Jelinek, M. Capek, et al., “Upper bounds on focusing efficiency,” Optics Express, vol. 30,
no. 25, p. 45 705, Dec. 2022

5M. Capek, L. Jelinek, and M. Masek, “Finding optimal total active reflection coefficient and realized gain
for multi-port lossy antennas,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 5,
pp. 2481–2493, 2021. doi: 10.1109/TAP.2020.3030941

6K. Schab, A. Rothschild, K. Nguyen, et al., “Trade-offs in absorption and scattering by nanophotonic
structures,” Optics Express, vol. 28, pp. 36 584–36 599, 24 2020. doi: 10.1364/OE.410520
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Current Density Bounds

A Note: MoM Solution × Current Impressed in Vacuum

MoM solution

Solution to I = Z−1V for an incident plane wave.

Current impressed in vacuum

Solution to XIi = λiRIi (the first inductive mode).

▶ Looking for an optimal current, it can be chosen completely freely, only the excitation
V = ZI may not be realizable.
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Far-field Optimality

Far-field Optimality

How to deal with far-field optimality?

▶ Point-wise, i.e., directivity D (ê, r̂) or gain G (ê, r̂).

▶ Prescribed far-field F = F (ϑ, φ):

▶ is a vector function,
▶ with a (unknown) phase,
▶ required smoothness (F (ϑ, φ) −→ F (ϑp, φp)).

Some works exist

▶ For example, for the cost in Q-factor7,

▶ far-field shaping for small antennas (SDP)8,

▶ . . .

Miloslav Čapek 8 / 37

https://www.cvut.cz/en


Far-field Optimality

Far-field Optimality

How to deal with far-field optimality?

▶ Point-wise, i.e., directivity D (ê, r̂) or gain G (ê, r̂).
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7M. Gustafsson and S. Nordebo, “Optimal antenna currents for Q, superdirectivity, and radiation patterns
using convex optimization,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1109–1118, 2013. doi:
10.1109/TAP.2012.2227656

8S. Shi, L. Wang, and B. L. G. Jonsson, Antenna current optimization and realizations for far-field pattern
shaping, 2017. [Online]. Available: https://arxiv.org/abs/1711.09709
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Far-field Optimality
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Miloslav Čapek 9 / 37



Far-field Optimality

plate

0◦

30◦

60◦

90◦

120◦

150◦

180◦

210◦

240◦

270◦

300◦

330◦

MoM solution
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Far-field Optimality

Far-field Optimality as Trade-off With Radiation Efficiency

The hypothesis

“Almost every far field pattern F0 can be generated by a current I0, however, potentially at
the cost of almost zero radiation efficiency.”

minimize
I

εF = ∥F 0 − F (I)∥

subject to ηrad (I) ≤ x

▶ The problem above forms a Pareto frontier in εF(I) and ηrad(I).

▶ A type of norm taken | · | is crucial.
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Far-field Optimality

Far-field Optimality: A Role of Phase

Far field F0 has to be given to solve

minimize
I

εF = ∥F 0 − F (I)∥

subject to ηrad (I) ≤ x

for a given x.

Two posibilities differing in our knowledge of the desired far field F 0:

Problem #1:

▶ Both amplitude and phase of F 0:

minimize
I

|F 0 − F (I)|2

subject to ηrad (I) ≤ x

▶ Phase often arbitrary.

Problem #2:

▶ Amplitude of F 0 is known; phase is arbitrary:

minimize
I

∥|F 0| − |F (I)|∥2

subject to ηrad (I) ≤ x

▶ Hard to solve (∝MAX-CUT → NP-hard).
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Miloslav Čapek 11 / 37

https://www.cvut.cz/en


Far-field Optimality

Far-field Optimality: A Role of Phase

Far field F0 has to be given to solve

minimize
I

εF = ∥F 0 − F (I)∥

subject to ηrad (I) ≤ x

for a given x.

Two posibilities differing in our knowledge of the desired far field F 0:

Problem #1:

▶ Both amplitude and phase of F 0:

minimize
I

|F 0 − F (I)|2

subject to ηrad (I) ≤ x

▶ Phase often arbitrary.

Problem #2:

▶ Amplitude of F 0 is known; phase is arbitrary:

minimize
I

∥|F 0| − |F (I)|∥2

subject to ηrad (I) ≤ x

▶ Hard to solve (∝MAX-CUT → NP-hard).
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Methodology

Methodology – Operators

▶ RWG representation of MoM IE operators.

▶ Far field

F (r̂) =

[
F
(
ϑ̂, r̂

)

F (φ̂, r̂)

]
.

▶ Far field component F (ê, r̂) = K (ê, r̂) I, with K = [Kp] point-wise given as

Kp (ê, r̂) = −j
Z0k

4π

∫

R3

ê ·ψp (r1) e
jkr̂·r1 dV1.

▶ Impedance matrix
Z = R+ L+ jX

with R+ jX being a vacuum part, and L representing ohmic losses, point-wise as

Lpq =

∫

Ω

Rs (r)ψ
∗
p (r) ·ψq (r) dΩ

(e.g., thin-sheet model).
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ê ·ψp (r1) e
jkr̂·r1 dV1.

▶ Impedance matrix
Z = R+ L+ jX

with R+ jX being a vacuum part, and L representing ohmic losses, point-wise as

Lpq =

∫

Ω

Rs (r)ψ
∗
p (r) ·ψq (r) dΩ

(e.g., thin-sheet model).
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▶ Far field component F (ê, r̂) = K (ê, r̂) I, with K = [Kp] point-wise given as

Kp (ê, r̂) = −j
Z0k

4π

∫

R3
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Methodology

Methodology – Antenna Metrics

▶ Radiation efficiency

ηrad =
Prad

Prad + Plost
≈ IHRI

IH (R+ L) I
=

1

1 + δ
(1)

with δ = Plost/Prad being dissipation factor.

▶ Far field
F (ê, r̂) ≈ K (ê, r̂) I.

▶ Antenna gain

G (ê, r̂) =
2π

Z0

|F (ê, r̂)|2
Prad + Plost

≈ 4π

Z0

IHKH (ê, r̂)K (ê, r̂) I

IH (R+ L) I
.
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Methodology

Methodology – Far-Field Integration

▶ Radiation power

Prad =
1

2Z0

∫

4π

F ∗ (r̂) · F (r̂) dΩ ≈ 1

2
IHRI.

▶ Lebedev quadrature over unit ball

I =

∫
f(Ω) dΩ ≈

∑

n

Λnf(ϑn, φn)

Prad ≈ 1

2Z0
IH[K]HΛ[K]I.

with

[K] =
[
KT(ϑ1, φ1) · · · KT(ϑn, φN )

]T
.

1

2

3

4

5

6

7

8

9 10

11

12

13

14

Lebedev quadrature with 14 points
integrating exactly up to Lmax (TM1m

and TE1m).

▶ Analogy to guassian quadrature on spherical shell.

▶ Selected quadrature degree treats spherical harmonics exactly up to known order.
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Methodology

Problem #1 in RWG Basis

Let us focus on the Problem #1 first. (Phase of F 0 is specified).

minimize
I

1

2Z0
|Λ1/2 (F0 − [K]I) |2

subject to
1

2
IHLI = δ

1

2
IHRI = 1

▶ Quadratic program with two quadratic constraints.

▶ Relatively complicated optimized metric.

▶ The problem can rewritten preserving its original nature. . .

Miloslav Čapek 15 / 37
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Methodology

Problem #1 in RWG Basis – Simplification (Part 1)

Optimized metric is to be simplified

1

2Z0

(
FH

0 − IH[K]H
)
Λ (F0 − [K]I) =

1

2Z0
FH

0 ΛF0 −
1

Z0
Re

(
IH[K]HΛF0

)
+

1

2
IHRI.

Normalization of far field F 0

Let us assume for the rest of the talk that the desired far field is normalized so that

Prad,0 ≈ 1

2Z0
FH

0 ΛF0 = 1

Envelope correlation coefficient

E(F ,F 0) = |ρ(F ,F 0)|2 =

∣∣∣∣∣
IHRI0√

IH0 RI0IHRI

∣∣∣∣∣

2

= · · · = |IHRI0|2

Miloslav Čapek 16 / 37

https://www.cvut.cz/en


Methodology

Problem #1 in RWG Basis – Simplification (Part 1)

Optimized metric is to be simplified

1

2Z0

(
FH

0 − IH[K]H
)
Λ (F0 − [K]I) =

1

2Z0
FH

0 ΛF0 −
1

Z0
Re

(
IH[K]HΛF0

)
+

1

2
IHRI.

Normalization of far field F 0

Let us assume for the rest of the talk that the desired far field is normalized so that

Prad,0 ≈ 1

2Z0
FH

0 ΛF0 = 1

Envelope correlation coefficient

E(F ,F 0) = |ρ(F ,F 0)|2 =

∣∣∣∣∣
IHRI0√

IH0 RI0IHRI

∣∣∣∣∣

2

= · · · = |IHRI0|2
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Methodology

Problem #1 in RWG Basis – Simplification (Part 2)

minimize
I

2− 1

Z0
Re

(
IH[K]HΛF0

)

subject to
1

2
IHLI = δ

1

2
IHRI = 1

or equivalently

maximize
I

1

Z0
Re

(
IH[K]HΛF0

)
= Re(ρ(F ,F 0))

subject to
1

2
IHLI = δ

1

2
IHRI = 1

▶ In MIMO, ECC is usually minimized, here we want to maximize!

▶ A possibility to reduce to QCQP with one quadratic constraint only. . .

▶ Grouping R and L constraints and changing multipliers.
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Methodology

Antenna Design Region

x
y

z

σCu

φ

ϑ

êr̂

ℓ

ℓ/2

ℓ/4

Two parallel plates, kℓ = π, copper σ = 5.96 · 107 Sm−1.

▶ Two plates shown above are used everywhere in this talk as an example.
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Example #1

Example #1: Synthesis of MoM Current

▶ Current I0 is evaluated for an impinging plane wave (normal incidence, x̂ polarization).

▶ Desired far field is specified as F0 = Λ1/2[K]I0, kℓ = π/4, Lebedev quadrature of
degree 50 (Lmax = 5).

▶ ηrad,0 ≈ 0.9998
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Miloslav Čapek 21 / 37



Example #1

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104
0.7

0.8

0.9

1
E(F ,F 0)
ηrad
|F 0 − F |2 /(2Z0)
duality gap gN

A B C

δ

o
p
ti
m
iz
ed

q
u
an

ti
ti
es

Optimal current for point A
(δ ≈ 10−4).

Optimal current for point B
(δ ≈ 3.16 · 10−4).

Optimal current for point C
(δ ≈ 10−3).
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Example #1

Comparison of Far Fields F 0 and F

Desired far field F 0.

Synthetized far field F points B and C.
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Compact Representation of the Far Field

Entire-domain Basis For Compact Far-Field Representation

▶ The solution is constructed from many degrees of freedom (as many as basis functions).

▶ No possibility to further restrict the solution.

▶ No relationship to excitation possibilities.

Lossy Characteristic Modes

XIn = λn (R+ L) In

▶ Potentially sparse basis of entire-domain functions.

▶ Relation to Lebedev quadrature and required number of points.

▶ Different properties than the classical characteristic modes (XIn = λnRIn).

f1 f2 f3 f4 f5
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Compact Representation of the Far Field
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Compact Representation of the Far Field

Maximum Gain as Inherent Property of LCMs

It can be shown9 that LCMs follows:

Gub (ê, r̂) =
∑

n

Gn (ê, r̂)

M
=

1

M
=

2

M
=

3

M
=
4
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=
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=

N

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

M∑
m=1

Gm(ϑ̂, r̂), r̂ = (ϑ, 0)

ϑ

Gm
Gub

ηrad,m < 0.2

▶ Curiously enough, the property above was unknown to both Harrington and Garbacz!

9M. Capek and L. Jelinek, “Fundamental bound on maximum gain as a sum of lossy characteristic modes
and its feasibility,”, 2023, eprint arXiv: 2302.06425. [Online]. Available: https://arxiv.org/abs/2302.06425
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Compact Representation of the Far Field

Additional Insight for a Designer: Modal Parameters

Optimal excitation coefficient:

βn =

√
4π

Z0Gub (ê, r̂)
F ∗
n (ê, r̂)
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Realization of “Arbitrary” Far Field

Problem Solution – The Workflow

1. Setup geometry, frequency, and material of the design region (Ω, ka, ρ).

2. Solve MoM and evaluate associated operators R, L, X, and [K] (with AToM10).

3. Perform lossy characteristic mode decomposition XIn = λn (R+ L) In.

4. Analyze modes, determine those being used. For example, ∀n : ηrad,n(In) > e.

5. Project (full) quadratic forms onto reduced basis, i.e., I =
∑

k βkIk.

6. Iteratively solve the QCQP for a vector of δ values:

▶ Package FunBo from CTU is used11.
▶ Solver QNCQPQuadLin.m is applied (Newton’s method over Lagrange multipliers to solve

the dual function represented by generalized eigenvalue problem, matrices are factorized
with Cholesky and normalized).

7. Reuse Lagrange multipliers found for the next iteration (fast convergence).

8. Calculate all associated metrics.

9. Construct Pareto frontier (E(F ,F 0) vs. ηrad(I) for each current in Pareto).
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10“Antenna Toolbox for MATLAB (AToM),” www.antennatoolbox.com, Czech Technical University in
Prague. (2019), [Online]. Available: {www.antennatoolbox.com}

11J. Liska, L. Jelinek, and M. Capek, “Fundamental bounds to time-harmonic quadratic metrics in
electromagnetism: Overview and implementation,” arXiv, 2021. doi: 10.48550/arXiv.2110.05312

Miloslav Čapek 27 / 37

https://www.cvut.cz/en
{www.antennatoolbox.com}
https://doi.org/10.48550/arXiv.2110.05312


Example #2

Example #2: Isotropic Far Field

▶ The same structure and settings as before.

▶ The desired far field pattern is isotropic
in φ̂ polarization, zero in ϑ̂ polarization.
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Two parallel plates.
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Example #2

Example #2: Cost Functions

10−4 10−3 10−2 10−1 100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

E(F ,F 0)
ηrad
|F 0 − F |2 /(2Z0)
duality gap gN

δ

op
ti
m
iz
ed

q
u
a
n
ti
ti
es
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Example #2

Example #2: Pareto Frontier
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Example #2

Example #2: Pareto Frontier
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Example #2

Solution A, ηrad = 0.977,
E = 0.957.

Solution B, ηrad = 0.886,
E = 0.968.

Solution C, ηrad = 0.208,
E = 0.977.

Solution D, ηrad = 0.002,
E = 0.983.
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Miloslav Čapek 31 / 37



Example #2

Example #2: Modal Spectra
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Unknown Phase

Solution – Problem #2

How to approach Problem #2? (Phase of F 0 is arbitrary).

minimize
I

∥|F 0| − |F (I)|∥2

subject to ηrad (I) ≤ x

▶ Suddenly, from easy problem we face an unsolvable one. . .

Some tricks as before, grouping both constraints together, and the phase is taken as an
unknown:

minimize
I,p

− 1

Z0
Re

(
IH[K]HΛdiag {F0}p

)

subject to
1

2
IHLI = δ

1

2
IHRI = 1

where p = [pk], pk = exp {jϕn}.
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Unknown Phase

The Approach Taken. . .

▶ Observation that the bounds have smooth currents is utilized.

▶ Hierarchical clusterization of phase diagram via K-means clustering over Lebedev.

▶ Performed for ϑ and φ independently. Zeros of F 0 can be skipped.

▶ fmincon (p) & QCQP (I) co-simulation.

▶ fmincon can be replaced by, e.g., manifold optimization12.

1 cluster in ϑ
(8 points skipped).

2 clusters in ϑ
(8 points skipped).

3 clusters in ϑ
(8 points skipped).

4 clusters in ϑ
(8 points skipped).
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Concluding Remarks

Future Outlook – Test Cases

1. What is the cost to replicate far field of one antenna on another (electrically smaller/etc.)?

2. How closely can be, e.g., spherical harmonics radiated by a planar structure?

3. Masked far field (zeros at some places).

4. Close investigation of isotropic radiator (take a spherical shell – no-hair theorem, etc.).

5. What is the cost of pencil beam of different design regions on various parameters?

6. Use projection to port voltages as the only controllable quantities.

7. . . .
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Concluding Remarks

Concluding Remarks

Far field optimiality

▶ Good problem to think of.

▶ Mixture of QCQP with other optimization routines.

▶ Many possible applications. . .

Topics of ongoing research

▶ To treat Problem #2 (with phase) effectively.

▶ To try many test cases.

▶ Investigate cost in Q-factor, excitation constraints.

▶ Apply port-mode representation (for arrays).
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Questions

Questions?
Miloslav Čapek

miloslav.capek@fel.cvut.cz

June 23, 2023
version 1.0

The presentation is available at ▶ capek.elmag.org

Acknowledgment: To my wife for letting me go :)
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