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Abstract

Fundamental bounds on quadratic electromagnetic metrics are formulated
and solved via convex optimization. Both dual formulation and method-
of-moments formulation of the electric field integral equation are used as
key ingredients. The trade-off between metrics is formulated as a multi-
objective optimization resulting in Pareto-optimal sets. Substructure fun-
damental bounds are also introduced and formulated as additional affine
constraints. The general methodology is demonstrated on a few examples
of minimal complexity and all examples are supported with freely avail-
able MATLAB codes contained in the developed package on fundamental
bounds.

1 Introduction
Considerable computational resources are often spent in the topological op-
timization of electromagnetic structures [1], such as radiators [2], waveguide
components [3], or cavities [4]. Nevertheless, the resulting designs are rarely
compared to their physical bounds, i.e., those bounds which provide the best
possible metric realization of a given problem [5, 6, 7, 8, 9, 10, 11, 12, 13] and
which could be used to judge the performance of the optimizer.

Fundamental bounds in electromagnetism can be typically formulated as
quadratic constrained quadratic programs (QCQPs). This allows us to use the
tools of convex optimization [14], a special class of mathematical optimization
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problems considered to be one of the most employable theories in computational
mathematics [14]. Notable examples in this area of study are fundamental
bounds to Q-factor [15], radiation efficiency [16, 17, 18], antenna gain [19, 20, 16],
thermal radiation [11, 21] scattering cross-sections [22, 10, 23] and their trade-
offs [24].

Applying method of moments (MoM) to the electric field integral equa-
tion [25] makes it an indispensable tool for establishing fundamental bounds
in electromagnetism. In this form, the fundamental bounds can be based on
current density expansion into a set of basis functions [26, 27, 28, 25] which
allows common electromagnetic functionals to be recast as linear or quadratic
functions of expansion coefficients. Formulations of fundamental bounds then
become QCQPs.

The aim of this paper is to show that there are many cases where the eval-
uation of fundamental bounds becomes a routine task which should always be
performed to increase the likelihood of success in topological optimization and
final design. This evaluation routine necessarily involves computational codes
which are presented throughout this paper, together with the links to their web
repository.

2 Time-Harmonic Metrics in Electromagnetism
Within the MoM paradigm [29, 25], linear electromagnetic operators L (J(r))
acting on equivalent current density J(r) are projected onto a set of basis func-
tions {ψn(r)} by defining

J(r, ω) ≈
N∑
n=1

In(ω)ψn(r), (1)

where the expansion coefficients In are collected in column matrix I. A notable
example of an electromagnetic operator is the electric field operator [25, 19],
which, with the help of Poynting’s theorem [30, 31], can be used to define power
metrics such as dissipated power, reactive power, and radiated power. The
procedure detailed in Appendix A shows that most steady-state electromagnetic
metrics used can be represented via a quadratic functional

f(I) = IHAI + Re[IHa] + α, (2)

where H denotes the Hermitian conjugate, A a square Hermitian matrix, a a
column matrix, and α a real constant.

Fundamental bounds are formed from (2) using expansion coefficients In
as degrees of freedom for the optimization where quadratic forms (2) act as
optimized metrics or constraints. The resulting optimization problem falls into
the QCQP family which is briefly described in Appendix B.
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3 Examples
This section provides three examples of how fundamental bounds are evalu-
ated. The first example shows a single-objective optimization applied to the
lower bound on the radiation Q-factor. The second example concerns multi-
objective optimization and shows a three-dimensional Pareto frontier of radia-
tion Q-factor, dissipation factor, and directivity. The third example considers
the case of maximum absorption and shows the treatment of external excitation,
substructure bounds and the general treatment of affine constraints (connected,
in this case, to far-field constraints and partial control). The examples follow the
steps in Appendix C which explains the entire procedure of determining the fun-
damental bounds by the prepared algorithms. The examples are supplemented
with several other appendices containing mathematical and implementation de-
tails.

3.1 Lower Bound on Q-Factor
As an example of a single-objective bound, assume that a lower bound on the
radiation Q-factor [5, 7, 15] is desired. The radiation Q-factor can be written
as

Q =
2ωW + |Preact|

2Prad
, (3)

where
W = We +Wm =

1

4
IHWI, (4)

is the cycle mean energy stored in electric and magnetic fields [19, 32, 33, 15]

We =
1

4ω
IHXeI, (5)

Wm =
1

4ω
IHXmI, (6)

where
Prad =

1

2
IHR0I (7)

is the cycle mean radiated power [19, 25] and

Preact = 2ω (Wm −We) =
1

2
IHXI (8)

is the cycle mean reactive power [19, 25, 33]. The matrices used in (4)–(8) are
explicitly defined in Appendix A. Notice that (3) is equivalent to

Q =
ωW

Prad

s.t. Preact = 0

(9)
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where the constraint Preact = 0 enforces resonance. This last formulation is the
starting point for formulating a lower bound on the Q-factor in the form of a
QCQP as

min
I

− IHR0I

s.t. IHωWI− 1 = 0

IHXI = 0.

(10)

That constrained minimization (10) is equivalent to the minimization ofQ in (9),
is guaranteed by the normative properties of cycle mean stored energy and its
matrixW, which is positive definite. If stored energy is a positive constant, then
maximization of radiated power results in the minimization of the Q-factor. Vec-
tor I solving this optimization problem generates the lower bound on the radia-
tion Q-factor, the value of which is given by (3) or (9). With respect to a partic-
ular form of (10), it is worth mentioning that a change R0 → −ωW, ωW→ R0

is possible and this was used in [7, 15]. By means of numerical implementation,
the form (10) is, nevertheless, more suitable since matrix R0 is not of full rank.

For a numerical example, and as with [7, 15], a rectangle with an aspect
ratio of 2:1 is chosen as a support for the optimal current density described by
vector I. The electrical size is set to ka = 0.5, where k is the wavenumber in
vacuum and a is the radius of the smallest sphere circumscribing the optimized
region. Rao-Wilton-Glisson (RWG) functions defined over triangular mesh [28],
see Fig. 1, are used as basis functions in (1).

The optimal current density, representing the minimum radiation Q-factor
with self-resonant constraint is depicted in Fig. 1. The underlying MATLABr

Figure 1: Current density corresponding to a lower bound on the Q-factor with
self-resonant constraint. A rectangle with an aspect ratio of 2:1 is chosen as a
support for optimal current density.

implementation is briefly described in appendix D. The corresponding normal-
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ized value of the radiation Q-factor is

(ka)3Qlb = 4.6, (11)

where the normalization with (ka)3 approximately removes the dependence on
electrical size ka provided [5, 7, 15, 8] that ka < 0.5. The numerical implemen-
tation used fifth-order quadrature to evaluate MoM reaction integrals. At the
electric size of evaluation, the numerical value (11) does not change when higher
order quadrature and/or denser mesh is used.

3.2 A Trade-Off Between Antenna Directivity, Dissipation
Factor and Q-factor

As a follow-up to the previous example about single-objective optimization and
the lower bound on the radiation Q-factor, multi-objective optimization concern-
ing minimum Q-factor, minimum dissipation factor and maximum directivity
with the constraint on self-resonance is considered here.

3.2.1 Minimum Dissipation Factor with Self-Resonant Constraint

Analogous to (9), the problem of minimal self-resonant dissipation factor [18, 17]
reads

min
I

Plost

Prad

s.t. Preact = 0

(12)

where
Plost =

1

2
IHRρI (13)

is the cycle mean lost power [17, 7, 18], with matrix Rρ detailed in Appendix A.
The QCQP equivalent to (12) is

min
I

− IHR0I

s.t. IHRρI− 1 = 0

IHX0I = 0.

(14)

The MATLABr implementation of (14) is described in Appendix D and,
as with the same setup as in Section 3.1, the result is the normalized minimal
self-resonant dissipation factor

Z0

Zs
(ka)4δlb ≈ 40, (15)

where the applied normalization removes [18] the dependence on surface
impedance Zs and for ka < 0.5 it also approximately removes the dependence
on electrical size ka. The free-space impedance Z0 is used to remove units. The
optimal current density is depicted in Fig. 2. Similar to the minimization of the
Q-factor, here the optimal current density is also approximately composed of a
mixture of electric-dipole like and magnetic-dipole like currents [34].
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Figure 2: Current density representing the lower bound on dissipation factor
with self-resonant constraint. A rectangle with an aspect ratio of 2:1 is chosen
as a support for optimal current density.

3.2.2 Pareto-Optimal Set of Dissipation and Q-factor with Self-
Resonant Constraint

Simultaneous minimization of Q-factor and self-resonant dissipation factor [17]
results in a Pareto-optimal set according to Appendix E. The optimization prob-
lem is

min
I

(1− c)Q+ cδ, ∀c ∈ (0, 1)

s.t. Preact = 0,
(16)

with the extreme cases c = 0 and c = 1 corresponding to the minimal Q-
factor (9) and minimal dissipation factor (12), respectively. The equivalent
QCQP reads

min
I

− IHR0I

s.t. IH [(1− c)ωW + cRρ] I− 1 = 0, ∀c ∈ (0, 1)

IHX0I = 0

(17)

which is implemented according to Appendix D. The resulting Pareto-optimal
set is depicted in Fig. 3 for the same setup as in previous examples and is
seen to be of minimal extent since the two optimized parameters are almost
nonconflicting. The current representing the minimal self-resonant dissipation
factor is a practical and acceptable solution to the task.

6



feasible

unfeasible

Figure 3: Pareto-optimal set of minimal radiation Q-factor and minimal dissi-
pation factor with self-resonance constraint. Values are normalized by funda-
mental bounds on these metrics. The filled region is feasible, while the white
region cannot be reached by any current distributed on the rectangle with aspect
ratio 2:1.

3.2.3 Pareto-Optimal Set of Dissipation Factor, Q-factor, and Di-
rectivity with Self-Resonant Constraint

The Pareto-optimal set of Q-factor, dissipation factor, and directivity is obtained
by the minimization of the convex combination of dissipation and Q-factor, as
in the previous case, and by directivity taken as a constraint,

min
I

(1− c)Q+ cδ, ∀c ∈ (0, 1)

s.t. Preact = 0

D = Dc, ∀Dc ∈ (D0(c),∞),

(18)

where it is noted that directivity is an unbounded metric that can reach ar-
bitrarily high values [35] and that value D0 is the minimum directivity within
the Q − δ Pareto-optimal set from Fig. 3. For low values of parameter D0 the
procedure must further omit all results that are not Pareto-optimal in the sense
of maximal directivity.

The QCQP equivalent to (18) reads

min
I

− IHR0I

s.t. IH [(1− c)ωW + cRρ] I− 1 = 0, ∀c ∈ (0, 1)

IHXI = 0

IH (8πU−DcR0) I = 0, ∀Dc ∈ (D0(c),∞)

(19)
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where matrix U represents radiation intensity and is detailed in Appendix A.
Pareto frontiers corresponding to a rectangular patch treated in the previous

examples are shown in Fig. 4 and Fig. 5. Figures also contain data coming from
topology optimization [36, 2] over the same patch fed in the middle at the top,
see Fig. 2, by a delta-gap source. These later data show the feasibility of the
fundamental bound.

1 2 3 5 8 12

1
2

5
10

20

0.8
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1.2

Q/Qlb

δ/δlb

D
/
D

0

Figure 4: Pareto frontier of a broadside direction with Qlb = 37, δlb = 0.017
and D0 = 1.28. Shadows denote its two-dimensional projections. The circle
markers are the result of topology optimization, while the cross, square and as-
terisk markers are the corresponding projections. The projections of the Pareto
frontier are not Pareto optimal in their entirety.

The MATLAB implementation of the optimization problem is described in
Appendix D.4.

3.3 Substructure Bounds
When basis functions ψn are sufficiently localized, an interesting variation in
the formulation of fundamental bounds is to optimize only a part of current
vector I (substructure consisting of only selected basis functions) lying within
a controllable part of the structure [20, 23], leaving the rest of the structure
(rest of the current vector) to evolve according to Maxwell’s equations (this
part is called uncontrollable). Under the MoM formulation [25] of field integral
equation ZI = V, see also Appendix A, the electromagnetic description of the
system can be partitioned as[

Zcc Zcu

Zuc Zuu

][
Ic
Iu

]
=

[
Vc

Vu

]
(20)
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Figure 5: Pareto frontier of an end-fire direction with Qlb = 37, δlb = 0.017 and
D0 = 0.19. Plot follows the same scheme as in Fig. 4.

where index “c” denotes “controllable”, “u” denotes “uncontrollable”, Z is the
system matrix [25] and V represents excitation [25].

The partitioning (20) offers the possibility to solely control the current in
the controllable region described by vector Ic. To that point, the uncontrollable
current Iu is eliminated from (20) using[

Zuc Zuu

]
I = Vu (21)

as an affine constraint. According to Appendix F, this constraint is equivalent
to an affine transformation of variables I→ x

I = t + Tx, (22)

which can be used to remove this constraint from the optimization problem.
This choice of new basis vectors (columns of matrix T) guarantee that even
when total current I does not satisfy (20), the current in the uncontrollable
region Iu is strictly governed by Maxwell’s equations, i.e., by (21), which reflects
not only the reaction of the uncontrollable region on incident wave Vu, but also
the reaction on the field −ZucIc generated by the controllable region. Such a
procedure is analogous to the construction of Green’s function in the presence
of scattering objects or boundaries [37].

As an example of this procedure, suppose a lossy uncontrollable region (the
yellow square patch in the left panel of Fig. 6) acting as a finite-sized ground
plane and a lossy controllable region (the blue square patch of edge length W
in the left panel of Fig. 6 fully controlled by optimization) the function of which
is to provide the highest absorption in the entire structure and, simultaneously,
vanishing back-scattering of a plane wave impinging perpendicularly on the
structure and being polarized along the edge of the controllable region.
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Figure 6: (left) Triangular mesh of the current supporting region. The blue
color represents the controllable region, while the yellow region shows an un-
controllable region. The ratio of edge lengths of the yellow and blue regions is
approximately 3:1. The controllable patch is placed at a height of W/6 over
the uncontrollable ground plane, W being the edge length of the controllable
patch. (right) Optimal current density realizing maximum total absorption and
zero back-scattering of a plane wave impinging normally on the structure from
top to bottom.

The resulting QCQP reads

min
x

− IHRρI

s.t. IHZI = IHV

I = t + Tx,

(23)

where the first constraint enforces the conservation of complex power [22], be-
ing a relaxed version of full system equation ZI = V and actually representing
two real quadratic constraints. The second constraint aggregates all affine con-
straints imposed on the problem, i.e., division into a controllable/uncontrollable
region (21) and the constraint realizing zero back-scattering which is given by
equation [

Fθ
Fφ

]
I = 0, (24)

where far-field vectors F are detailed in Appendix A.
The results for the considered setup are depicted in Fig. 7, showing a fre-

quency sweep of the normalized optimal absorption and a representative scat-
tering diagram at the central frequency, which clearly presents the desired van-
ishing backscattering. The optimal current density at the central frequency is
depicted in the right panel of Fig. 6 and suggests an electric-coupled resonator
proposed in [38] as a potential design that can fulfill the optimization require-
ments. That this is nearly the case is shown by the realized absorption (see
the dashed curve in Fig. 7) of this resonator placed over the considered ground
plane. The considered surface impedance is Zs = 0.01 Ω.

The MATLABr implementation of the optimization problem is described
in Appendix D.5.
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Figure 7: (left) Frequency sweep of the normalized optimal absorption (red
solid curve) and absorption realized by an electric-coupled resonator [38] over
the same ground plane (blue dashed curve). The incident power flux is denoted
by S0 and A abbreviates the geometric cross-section of the structure. (right)
Scattering diagram corresponding to the optimal current density from Fig. 6 for
a plane wave impinging from top to bottom.

4 Numerical Precision and Computational Effi-
ciency

Numerical precision and the computational complexity of fundamental bounds,
mostly depending on the discretization of the support of the optimal current
density, are considered in this section. The quality factor is used as the optimized
metric.

Numerical precision is addressed in Fig. 8 and Fig. 9. Using the analytically
known value of the minimum quality factor of a spherical shell [39], it is observed
that the achieved gain in numerical precision is approximately one digit per one
order in the number of discretization elements as in the case of self-resonant
dissipation factor, see [18, App. C].

Numerical precision is related to computational efficiency and depends on
the number of discretization elements. The dependence is shown in Fig. 10.

The results show that the algorithmic complexity of evaluating fundamental
bounds is slightly higher than the solution of a linear equation system as imple-
mented in MATLAB via the mldivide function. For small sizes of the under-
lying problem, the computation cost is dominated by an overhead of underlying
functions with a low scaling factor. For larger sizes, n > 500, the computational
cost is dominated by the evaluation of eigenvalues with an approximate scaling
of n3.

Both solvers used in this work, and described in Appendix G, are iterative,
using standard methods of convex optimization such as Newton’s or the simplex
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Figure 8: Normalized lower bound on Q-factor for a varying number of di-
cretization elements n. The sphere and rectangle of edge length ratio 1:2 are
considered. A quadrature of the fifth order is used in all cases to evaluate
reaction integrals resulting from the MoM description.
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Figure 9: Relative error of the lower bound to Q-factor for a varying number
of dicretization elements n on a sphere. The analytically known value of the
minimum quality factor [39] is denoted as Qanl

lb .

method. To increase computational efficiency, it is therefore advantageous to
begin with a low discretization which gives approximate values of Lagrange’s
multipliers µ, see Appendix B. Those are then used as the initial prediction for
higher discretization to save the number of iteration steps.
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Figure 10: Computational cost of solution to the optimization problem (10)
(the evaluation of necessary matrices is not counted) as a function of number
of dicretization elements n. The same setup as Fig. 8 is considered. A mobile
Intel processor Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz was employed.
The figure also shows an asymptote with n3.4 slope.

5 AToM Package: Fundamental Bounds
Examples in Section 3 were all evaluated using the “FunBo” package attached
to the Antenna Toolbox for MATLABr (AToM) [40], which is a numerical tool
for the analysis and synthesis of electromagnetic structures developed at the
Department of Electromagnetic Field at FEE CTU in Prague.

The package, including scripts for the above studied examples can be found
on AToM’s web page antennatoolbox.com/fundamentalBounds. As a supple-
ment to the commentaries found in the scripts, Appendix D tries to briefly
explain the most important parts of the underlying codes. The procedure to
choose the right solver for a given problem is then shown in Appendix C.

For the purpose of this text, the matrices shown in Appendix A and the en-
tering of optimizations were evaluated in the Antenna Toolbox for MATLABr

(AToM), which, therefore, must be included in the MATLABr path for exam-
ples to run properly. The package for fundamental bounds can, however, also be
used with matrices supplied by the user. Notably, the core functions introduced
in Appendix G can be applied to arbitrary QCQP satisfying the conditions listed
in Appendix B.

The contents of the package includes:

+controllableRegion Functions in this name space treat affine constraints
and controllable/uncontrollable region problems.

+optimProblems Generic functions computing fundamental bounds on fre-
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quently used antenna and scattering metrics are prepared in this name
space.

+solvers The solvers to QCQP are contained in this subspace. All solvers
use dual formulation.

examples Folder with examples, including those detailed in Section 3.
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Appendices
A Matrix Representation
Method of moments [25, 26, 41] is a numerical tool which converts a linear
integro-differential operator equation to a system of linear equations. Typically,
a symmetric complex matrix represents an operator, an unknown is represented
by the vector of expansion coefficients I and excitation is commonly denoted by
vector V. The representation employs a reaction product1 [42]

〈f , g〉 =

∫
Vs

f(r) · g(r) dV, (25)

where f , g are scalar or vector functions. Within this text, the electromagnetic
interaction is described by an electric field integral equation (EFIE) [25] with
real-valued basis functions ψ and the system equation

(Zρ + Z0) I = V, (26)

where the system matrix consists of material part Zρ and vacuum part Z0. The
elements of the material matrix Zρ = Rρ + jXρ are

zρmn = 〈ψm,ρψn〉 (27)

with
ρ = −j

Z0

k
χ−1 (28)

where χ is the electric susceptibility tensor. In the case of a highly conduct-
ing obstacle, the term ρψn is substituted by Zsψn with Zs being a surface
impedance [30, 43].

1If surface structures are treated, the volume integral reduces to a surface integral.
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Elements of matrix Z0 = R0 + jX0 are given by [25]

z0mn = jZ0k

(
〈ψm, 〈G,ψn〉〉 −

1

k2
〈∇ ·ψm, 〈G,∇ ·ψn〉〉

)
, (29)

where G denotes the free-space Green’s function

G(r, r′) =
e−jk|r−r

′|

4π|r − r′| . (30)

Finally, the elements of excitation vector V is calculated as

Vm = 〈ψm,Ei〉 (31)

with Ei being the incident electric field.
According to [19, 32, 33], the matrix representing the cycle mean stored

energy is given as

W =
∂X0

∂ω
, (32)

where the derivative of the impedance matrix with respect to angular frequency
ω

ω
∂z0mn
∂ω

= jZ0k

(
〈ψm, 〈G,ψn〉〉+

1

k2
〈∇ ·ψm, 〈G,∇ ·ψn〉〉

)
+

+ Z0k

(
〈ψm, 〈k|r − r′|G,ψn〉〉 −

1

k2
〈∇ ·ψm, 〈k|r − r′|G,∇′ ·ψn〉〉

)
(33)

is needed.
The knowledge of matrices representing reactive power and stored energy can

be used to derive matrices [33, 15] representing the cycle mean energy stored in
the electric field

Xe =
ωW −X0

2
(34)

and in the magnetic field

Xm =
ωW + X0

2
. (35)

In the presence of material media with no temporal dispersion, the substi-
tution X0 → X0 + Xρ in (32) also gives the correct values of stored energy.
Temporally dispersive media must, in many cases, be treated differently [33].

Radiation intensity matrix U is related to the matrix of electric far-field F
projected into a given direction ê, typically θ0 or ϕ0 [7]. The connection between
the two reads

U
(
d̂, ê

)
=

FH
(
d̂, ê

)
F
(
d̂, ê

)
2Z0

, (36)

and the matrix elements of the projected electric far-field matrix reads

Fn

(
d̂, ê

)
=
−jZ0k

4π
〈ejkd̂·r, ê ·ψn〉, (37)

where d̂ is the unit vector in the direction of observation.
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B Quadratically Constrained Quadratic Pro-
gram

The solution to a general QCQP is, in this text, attempted by in-house routines
contained in the MATLAB package “FunBo” attached to the Antenna Toolbox
for MATLABr (AToM) [40], a numerical tool developed at the department of
electromagnetic field at CTU FEE in Prague. The following form of QCQP is
considered

min
I

IHAI + Re[IHa] + α (38)

s.t. IHBiI + Re[IHbi] + βi = 0; ∀i = 1, . . . ,m (39)

where

I,a, bi ∈ Cn×1,
A,Bi ∈ Cn×n,
α, βi ∈ R,
B1 � 0,

all matrices are Hermitian and a solution exists. Lagrange’s function, associated
with (38)–(39), reads

L(I, µ1, . . . , µm) = IH

(
A−

m∑
i=1

µiBi

)
I+

+ Re

[
IH

(
a−

m∑
i=1

µibi

)]
+ α−

m∑
i=1

µiβi, (40)

where µi are Lagrange’s multipliers.
The solution is approached via the dual formulation in which the dual func-

tion
g (µ1, . . . , µm) = inf

I
L(I, µ1, . . . , µm) (41)

is constructed and later maximized over variables µi. This gives [14] the lower
bound2 to (38)–(39).

Two cases must be considered. The first case governs the situation when

a = 0, bi = 0, ∀i ∈ {1, 2, . . . ,m}, (42)

in which the stationary points of Lagrange’s function read(
A−

m∑
i=2

µiBi

)
Ĩ = λB1Ĩ (43)

2It might happen that the dual problem provides a solution which does not satisfy all
constraints (39). In such a case the so-called dual gap [14] appears and the solution to the
dual problem can only be taken as a lower bound to the original (primal) problem.
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and generate the dual function

g (µ1, . . . , µm) =


α−

m∑
i=1

µiβi; if µ1 = min{λ},

−∞; otherwise.

(44)

Minimizer Î for (38)–(39) is a linear combination of eigenvectors Ĩ associated
with the eigenvalue µ1 = min{λ} evaluated at the maximum of the dual func-
tion (44) and fulfilling all constraints (39).

In the second case, when at least one of the vectors a,bi is nonzero, the
stationary points of Lagrange’s function read

İ = −1

2

(
A−

m∑
i=1

µiBi

)−1(
a−

m∑
i=1

µibi

)
, (45)

which is related to the dual function

g (µ1, . . . , µm) =


1

4
İH
(
a−

m∑
i=1

µibi

)
+ α−

m∑
i=1

µiβi; if µ1 < µmin
1 ,

−∞; otherwise.

(46)

The condition µ1 < µmin
1 = min{λ} results from the demand of (45) being a local

minimum (the Hessian matrix of Lagrange’s function being positive definite).
In this case, minimizer Î for (38)–(39) is equivalent to İ given by (45) in the
maximum of the dual function (46).

Due to its construction (41), the dual function g (µ1, . . . , µm) is convex and
its maximum can be found by standard tools, such as Newton’s method or the
simplex method. Within the aforementioned package, this solution is provided
by MATLAB functions QNCQPQuadLin(), minLinStB1(), minAstBn(),
and minAstB1(), which are briefly described in Appendix G. The appropriate
function to solve a given QCQP can be chosen according to Appendix C.

C Flow Chart
Determination of a fundamental bound using the algorithms in Appendix G re-
quires specific steps to be followed and the conditions mentioned in this chapter
to be fulfilled. The procedure is visualized in Fig. 11.

First, it is important to decide whether the problem at hand is single- or
multi-objective. The described algorithms are solely able to find a solution to
QCQP with one optimized metric and an arbitrary number of constraints, i.e.,
in the case of a multi-objective problem, it is solely able to find a single point
of a Pareto-optimal set. Two possibilities of how a multi-objective problem can
be transformed in this respect are given in Appendix E.
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Figure 11: Fundamental bound searching flow chart.

Second, the setup of an optimization problem and its subsequent transcrip-
tion into the form of a QCQP is required, in addition to the first constraint
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matrix being positive definite. To simplify this step, the basic electromagnetic
operators produced by MoM are given in Appendix A.

If the optimization problem contains affine constraints3, the optimization
problem should be transformed so as to satisfy these constraints. The resulting
optimization problem is then constrained only by quadratic functions. The
transformation is explained in Appendix F.

The linear term appearing in the quadratic form of the first constraint should
subsequently be removed by applying transformation4 I→ x

I = x− 1

2
B−11 b1 (47)

to all quadratic functionals. The transformation centers the variable space ac-
cording to the first constraint, suppresses the linear term in the first constraint,
and wipes out potentially hidden zero linear terms in the other constraints.

At the end of the process, all transformations that have been used, such
as (47) or (60), have to be restored by the application of their inverses to obtain
the true optimized vector I.

D Examples Implementation
This Appendix supplements Section 3 with the MATLABr implementation of
the corresponding examples. The implementation is discussed briefly and fo-
cuses only on essential points. For a more detailed understanding, download
and open the package with examples at the AToM web page, section Funda-
mental Bounds, http://antennatoolbox.com/fundamentalBounds.

D.1 Lower Bound on Q-factor
The implementation of the example follows QCQP (10).

The matrices are normalized and the problem is solved by function
minAstBn(), see Program 1, which is described in Appendix G. The example
is prepared in the file exMinQselfRes which applies the prepared function
minQselfRes().

D.2 Lower Bound on Dissipation Factor
The implementation is identical to the previous case of the minimum Q-factor
with only the matrices being changed, see Program 2.

The example is prepared in the file exMinDeltaSelfRes which applies
the prepared function minDeltaSelfRes().

3The definition of controllable and uncontrollable regions (substructure bounds) is also
treated by affine constraints, which is used in Sec. 3.3.

4If this linear term is zero, the transformation (47) is an identity transformation.
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t0=tic;
[~, triplets] = solvers.normalizeTriplet(- OP.R0, [], 0,...

OP.omW, [], 0,...
OP.X0 + OP.Xmat, [], 0);

[~, ~, Ivec, lambdaVec] = solvers.QCQP.minAstBn( triplets{1},...
lambdaVec, verbosity,...
triplets{4}, {}, - 1,...
triplets{7:end});

tocTime = toc(t0);

Qopt = 0.5*real(((Ivec'*OP.omW*Ivec) + abs(Ivec'*OP.X0*Ivec))/...
(Ivec'*OP.R0*Ivec)); % optimal value

Program 1: The core of function optimProblems.minQselfRes(). Struc-
ture OP contains the required matrices: R0, W, X = X0 + Xρ. The matrices
are normalized, the solution is found by function solvers.QCQP.minAstBn
and the Q-factor is evaluated.

t0 = tic;
[~, triplets] = solvers.normalizeTriplet(- OP.R0, [], 0,...

OP.Rmat, [], 0,...
OP.X0 + OP.Xmat, [], 0);

[~, ~, Ivec, lambdaVec] = solvers.QCQP.minAstBn( triplets{1},...
lambdaVec, verbosity,...
triplets{4}, {}, - 1,...
triplets{7:end});

tocTime = toc(t0);

dOpt = real((Ivec'*OP.Rmat*Ivec)/(Ivec'*OP.R0*Ivec)); % optimal value

Program 2: The core of function optimProblems.minDeltaSelfRes() fol-
lowing the same steps as Program 1. Additionally, structure OP contains matrix
Rρ.
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D.3 Pareto-Optimal Set of the Dissipation factor and Q-
factor

The implementation is similar to the previous examples. The major difference
is a sweep (for-loop) over a convex parameter in (17) which provides a sweep
over the Pareto frontier. The function minAstBn() is applied in every cycle,
see Program 3.

alpha = alphaList(ind);
normMat.P = norm_mat(alpha*0.5*OP.omW + (1 - alpha)*OP.Rmat);
[~, ~, Ivec, lambdaVec] = solvers.QCQP.minAstBn( - normMat.R0,...
lambdaVec, verbosity,...
normMat.P, {}, - 1,...
normMat.X, {}, 0);

Program 3: Computation of one Pareto-optimal point, which is a part of the
example exMinQselfResVsDelta. In each Pareto-optimal point the convex
combination of positive definite matrices is normalized as a new matrix and the
solver function solvers.QCQP.minAstBn is applied.

D.4 Trade-off Beween Directivity, Dissipation factor and
Q-factor

As shown in QCQP (19), the Pareto-optimal set of points is, in this case, solved
as a convex combination between the dissipation factor and the Q-factor with
directivity fixed by a constraint. Due to the need of a two-dimensional sweep,
all matrices are mapped to a special subspace5 in Program 4 which decreases
the complexity of computation. For the particular case used in Section 3, the
dimension of all matrices was decreased from 285 to 34 with just a small sacrifice
in precision.

[Vm, lam] = eig(OP.X0, OP.R0, 'vector');
modes = abs(lam) < 1e15;

[~, ~, Vf] = svd(OP.F, 'econ');

V = [normalize(Vm(:,modes),1, 'norm'), Vf];

Program 4: The subspace forming new basis vectors consists of characteristic
modes with eigenvalues of sufficiently small magnitude, and of right singular
vectors of singular value decomposition of the far-field matrix. All matrices are
part of structure OP. Matrix V contains the basis vectors in its columns.

The subspace only consists of significant characteristic modes and the non-
singular vectors (one or two) of the radiation intensity matrix. Characteristic

5The chosen characteristic modes are important to the Q-factor and dissipation factor,
while the singular eigenvectors enhance directivity.
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modes are important to the dissipation factor and the Q-factor, while the addi-
tional vector resolves the directivity.

If broadside radiation is desired, the two far-field matrices (to two broad-
side directions) are the same, while if the end-fire is desired, the matrices are
different. One must then choose the maximum of these two function values if
directivity is not included in the optimization problem, as in the case of the
Pareto frontier between the dissipation factor and the Q-factor in Program 5.

[~, ~, Ivec, lambdaVec, dg] = solvers.QCQP.minAstBn( - normMat.R0,...
lambdaVec, verbosity,...
matP, {}, - 1,...
normMat.X, {}, 0);

if dg
err = [Ivec'*matP*Ivec - 1;...

Ivec'*normMat.X*Ivec];
disp(err);

end

Qlist(1,ind) = Q_fun(Ivec);
deltaList(1,ind) = delta_fun(Ivec);
Dlist(1,ind) = max([D_fun(Ivec), D_fun2(Ivec)]);

Program 5: Computation of the dissipation and Q-factor Pareto-optimal set of
points with evaluation of maximal directivity. The optimization is identical to
Program 3.

The Pareto-optimal point definitions are given in Appendix E, but it is only
the directivity of the three optimized metrics which requires an additional choice
of the optimum6.

The section of the code computing the rest of the Pareto-optimal points uses
function minAstBn.m. Before the optimization procedure, the set of directivity
values D0 is determined in Program 6.

Dmin = min(Dlist(1,:));
if direction == 0

Dmax = 1.3*Dmin; % broadside
else

Dmax = 20*Dmin; % endfire
end
ec = 1;

Dswp = Dmin + (Dmax - Dmin)*linspace(0, 1, nParetoPoints(1)).^ec;
Dlist(2:end,:) = repmat(Dswp(2:end).', 1, nParetoPoints(2));

Program 6: The points with specified directivity are set to a multiple of D0.

For a given directivity, the Pareto-optimal set of points of the dissipation
6For example, using a spherical shell as the current support, an additional optimization

for directivity would be needed since “all directions" are equivalent.
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factor and the Q-factor is found in Program 7. The algorithm starts with the

for indD = 2:nParetoPoints(1)
lambdaVec = zeros(1,3);
for ind = 1:nParetoPoints(2)

if Dlist(indD,ind) > Dlist(1,ind)
alpha = alphaList(ind);

matP = normMat_fun(alpha*OP.omW + (1 - alpha)*OP.Rmat);
matP = 0.5*(matP + matP');
matD = normMat_fun(D_constraintMat(Dlist(indD,ind)));

try

[~, ~, Ivec, lambdaVec, dg] = solvers.QCQP.minAstBn( -
normMat.R0,...

lambdaVec, verbosity,...
matP, {}, - 1,...
normMat.X, {}, 0,...
matD, {}, 0);

else
Qlist(indD,ind) = Qlist(1,ind);
deltaList(indD,ind) = deltaList(1,ind);
Dlist(indD,ind) = Dlist(1,ind);

end
end

end

Program 7: Computation of the Pareto-optimal points in all three metrics si-
multaneously. The procedure is similar to the Q-factor and dissipation factor
Pareto-optimal points in Program 3. The only difference is that the constraint
for directivity is added and represented by matrix matD.

lowest directivity found on the Q − δ Pareto frontier given by the example in
Section 3.2.2. If the set directivity is lower than the directivity computed on
the Q− δ Pareto frontier, the point is skipped.

D.5 Substructure Bounds
The implementation of the example with substructure bounds shown in Sec-
tion 3.3 is quite different from the previous ones. It contains affine constraints
treated by Appendix F and applies another optimization solver.

For the purpose of this example, the mesh grid is generated by the
function models.utilities.meshPublic.pixelGridToOrthoMesh()
from AToM and positioned after being resized to the chosen dimen-
sions in Program 8. The incident planewave excites the whole struc-
ture from a given direction in Program 9. The setting of the control-
lable and uncontrollable parts of the structure is done by the function
controllableRegion.defineControllableRegion() from the package
and the indices are extracted in Program 10. Then, in a cycle with a frequency
sweep, the required operators are computed in Program 11, the affine constraints
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%% Create and plot mesh - Pixellized structure of Nx x Ny cells

% bottom patch
NxGround = 11; % number of pixels in x-direction
NyGround = 11; % number of pixels in y-direction
PX = 1*ones(NyGround, NxGround);
[nodes, connectivityList] = ...

models.utilities.meshPublic.pixelGridToOrthoMesh(PX, 1);

% top patch
NxPatch = 10; % number of pixels in x-direction
NyPatch = 10; % number of pixels in y-direction
PX = 1*ones(NyPatch, NxPatch);
[nodesPatch, connectivityListPatch] = ...

models.utilities.meshPublic.pixelGridToOrthoMesh(PX, 1);

% scale
nodes(:,1) = nodes(:,1) / NxGround * Lground;
nodes(:,2) = nodes(:,2) / NyGround * Wground;
nodesPatch(:,1) = nodesPatch(:,1) / NxPatch * Wpatch;
nodesPatch(:,2) = nodesPatch(:,2) / NyPatch * Lpatch;

% shift top patch
nodesPatch = models.utilities.meshPublic.translateMesh(...

nodesPatch, [0,0,height]);

% join meshes
[nodes, connectivityList] = ...

models.utilities.meshPublic.uniteMeshes(nodes, ...
connectivityList, nodesPatch, connectivityListPatch);

% create mesh structure
mesh = models.utilities.meshPublic.getMeshData2D(nodes,
connectivityList);

Program 8: Mesh generation from the pixel grid applies function
models.utilities.meshPublic.pixelGridToOrthoMesh() from
AToM. The edges of the patch and ground are rescaled to the given
dimensions. The meshes are joined and the structure mesh is generated.

%% Excitation
% planewave
planeWaveData.propagationVector = [0 0 -1];
planeWaveData.initElectricField = [0 1 0];
planeWaveData.axialRatio = Inf;
planeWaveData.direction = 'right';

Program 9: Setting excitation by a linearly polarized plane wave.
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%% Setting controllable region - rectangular prism
% prepare basis functions
basisFunc = models.solvers.MoM2D.basisFcns.getBasisFcns(mesh);

userData.polarity = 'uncontrollable'; % size data define (un)controllable
userData.type = 'rectPrism';
userData.dx = 2*Lground; % x-size of selected region
userData.dy = 2*Lground; % y-size of selected region
userData.dz = height; % z-size of selected region
userData.centre = [0,0,0]; % center of selected region

[NBF, NBFc, NBFu, BFtoBFc, BFtoBFu] = ...
controllableRegion.defineControllableRegion (mesh, basisFunc,

userData);

Program 10: Setting of the controllable and uncontrollable regions.

[OP, ~] = models.utilities.matrixOperators.MoM2D.batch.evaluate(...
mesh, f0, ZsList(1,ika), 'quadOrder', quadOrder, 'verbosity', ...
MoMVerosity, 'normalize', normalize, 'symmetrize', true, ...
'usegpu', true, 'requests', {'R0','Rmat', 'X0','Xmat', ...
'U','Fph', 'Fth'});

% define radiation intensity direction, component and frequency
OP.theta = 0;
OP.phi = pi/2;
OP.component = 'total';
OP.f0 = f0;
OP.U = OP.U_hndl(OP.f0, OP.theta, OP.phi, OP.component);

Program 11: Operators in structure OP are computed from the data in the
structure mesh.
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are set in Program 12, and the optimization problem is implemented in the func-

%% Excitation
% planewave
V = models.solvers.MoM2D.excitation.planeWave(mesh, basisFunc, ...

planeWaveData, k0, quadOrder);

if normalize
% normalized -> V [Volt]
V = V./mesh.triangleEdgeLengths(OP.BF.data(:,3),1);

end

%% affine constraints
[~, ~, ~, ~, ~, Vu] = controllableRegion.decompHndls(BFtoBFc, BFtoBFu);

% affine constraint on C/U region
OP.Aaff = Vu(OP.R0 + OP.Rmat + 1i*OP.X0 + 1i*OP.Xmat);
OP.aAff = - Vu(V);

% affine constraint on far-field
OP.Aaff = [OP.Aaff; ...

OP.Fth_hndl(OP.f0, OP.theta, OP.phi);...
OP.Fph_hndl(OP.f0, OP.theta, OP.phi)];

OP.aAff = [OP.aAff;0;0];

Program 12: Affine constraints are stored in two variables (OP.Aaff ,
OP.aAff) as rows. They are set to satisfy ZucI−Vu = 0 in the uncontrollable
region and to ensure zeros in the scattering pattern.

tion optimProblems.minMaxPaPsPeZpowerConst(), see Program 13.
The function employs controllableRegion.transformQuadFormAff()

% optimization
[PaOptList(1,ika), ~, ~, IOpt, lambdaInitList, tocTime] = ...
optimProblems.minMaxPaPsPeZpowerConst(OP, V, 'max', 'Pa', ...
'lambdaVec', lambdaInitList, 'verbosity', OptimVerbosity);

UOptList(1, ika) = (IOpt'*OP.U_hndl(OP.f0, OP.theta, OP.phi, ...
OP.component)*IOpt);

Program 13: The optimization problem is solved in the function
controllableRegion.transformQuadFormAff(), which uses the solver
function designed for problems with linear terms.

to treat the affine constraint and solvers.QCQP.QNCQPQuadLin() to solve
the optimization problem.

E Multi-Objective Optimization and Pareto-
Optimal Sets

Multi-objective optimization can be formulated as [44, 45, 46]
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min
I

{f1(I), f2(I), . . . , fp(I)} (48)

where p ≥ 2 is the number of objectives and arbitrary constraints could also be
included. A solution to the multi-objective optimization is commonly assumed
in the form of a Pareto-optimal set, which is a set of I such that a decrease in
any objective function cannot be made without an increase in another function.
One possibility of evaluating the Pareto-optimal set, which is used in this text,
is to define a function

f(c,w, I) =

p∑
i=1

ciwifi(I), where

p∑
i=1

ci = 1, ci ≥ 0, wi > 0 (49)

which is a convex combination of objective functions weighted by arbitrary
positive weights wi. The set of points

Î(c) = arg min
I

f(c,w, I), (50)

is Pareto-optimal for arbitrary fixed weights w and all ci > 0.
If ck = 1, the other coefficients c are zero and

f̂k = min
I

fk(I) (51)

then

min
I

∑
i 6=k

fi(I) (52)

s.t. fk(I) = f̂k (53)

is Pareto-optimal for all 0 < ci < 1, ∀i 6= k. If any ck = 0,

Î = arg min
I

∑
i 6=k

fi(I), (54)

then

min
I

fk(I) (55)

s.t. fi(I) = fi(Î), ∀i 6= k (56)

is Pareto-optimal with the previous assumptions and recurrence.
The linear combination (49) is not able to cover [44] linear trade-offs between

metrics in the Pareto-optimal sets. Such cases can be treated by optimizing one
of the metrics only while fixing the others by constraints, i.e.,

min
I

fk(I) (57)

s.t. fi(I) = f̃i, ∀i 6= k, (58)

where f̃i is a Pareto-optimal point according to metrics fi, ∀i 6= k.
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F Removal of an Affine Constraint
Assume an affine constraint

AI + a = 0, (59)

where A is a complex rectangular matrix of size M × N with M < N . This
appendix shows a basis transformation

I = t + Tx (60)

that removes this constraint from the optimization problem.
In order to obtain vector t and matrix T, matrix A is decomposed via

singular value decomposition [47] as

A =
[
UL

1 UR
1

][σ 0
0 0

][
UL

2 UR
2

]H
, (61)

where matricesU are unitary and σ contains non-zero singular values or singular
values that were above the user-defined threshold. Substituting into (59) it is
possible to see that transformation (60) with

t = −UL
2diag

(
1

σn

)(
UL

1

)H
T = UR

2

(62)

is the solution (or least-squares approximation) to (59) for arbitrary vector x.
Knowing transformation (60), the affine constraint (59) can be removed from

the optimization problem by transforming all its quadratic forms (2) as

f (x) = xHÃx + Re[xHã] + α̃, (63)

where

Ã = THAT, (64)

ã = TH (2At + a) , (65)

α̃ = Re
[
tH (At + a) + α

]
. (66)

This functionality is provided by the MATLABr functions:

• controllableRegion.createTransformAffine(),

• controllableRegion.transformQuadFormAff()

from the package.
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G Implementation of QCQP Solvers
All examples mentioned in section 3 use one of the in-house solvers contained in
the name space +solvers\+QCQP which are prepared to solve (or to set a lower
bound to) arbitrary QCQP using a dual formulation. The solvers follow the
nomenclature of Appendix B. If the values of the primal and the dual problem
are not the same, a dual gap occurs [14] and a warning report is given.

There are four different solvers, each dedicated to the appropriate form of
QCQP. Functions minLinStB1 and minAstB1 are applicable to quadratic
programs with one purely quadratic constraint and a purely linear or purely
quadratic objective function. These functions are specialized, simple to read
and are not detailed in this appendix. The other two solvers QNCQPQuadLin
and minAstBn are generic and are detailed in this appendix.

G.1 Quadratic Objective Function and Quadratic Con-
straints with Linear Terms (QNCQPQuadLin)

This function solves full QCQP of the form (38)–(39) with at least one lin-
ear term, i.e., with dual function (46). The solver begins with the Cholesky
factorization of the positive definite matrix B1 in Program 14 to decrease the
complexity of the subsequent eigenvalue decompositions. Initial Lagrange mul-

L = chol(varargin{1,1});

Program 14: Cholesky decomposition of the positive definite matrix.

tipliers are compared to the maximal one in Program 15 which ensures the
positive definiteness of the Hessian matrix. The initial solution and value of

lambdaLeadMax = real(eigs(A - matrixSum(2), ...
L, 1, 'sr', opt)); % pos. def. region

Program 15: Maximal Lagrange multiplier to stay in the positive definite region.

the dual function are computed in Program 16. Newton’s method is used to

tmp = vectorSum(1);
H = A - matrixSum(1); % Hessian matrix of Lagrangian
xOpt = -0.5*mldivide(H,a - tmp); % initial solution
gOld = real(0.5*(a - tmp)'*xOpt) + ...

(a0 - constantSum(1)); % initial value of dual function

Program 16: Computation of the initial value of the dual function.

maximize the dual function. Newton’s step in Lagrange multipliers is given by

p = −H−1d gd, (67)
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where

Hij
d = 2Re

[(
Bix+

bi
2

)H

H−1
(
Bjx +

bj
2

)]
(68)

is an element of the dual function Hessian matrix for the actual vector x and

gid = −Re
[
(Bix + bi)

H
x
]
− βi (69)

is an element of the dual function gradient at the same point in Program 17.
The length of the step is controlled and reduced in Program 18 by a coefficient

for iConst = 1:nConst
gradDual(iConst,1) = - real((varargin{1,3*(iConst-1)+1}*xOpt + ...

varargin{1,3*(iConst-1)+2})'*xOpt) - varargin{1,3*(iConst-1)+3};

for jConst = iConst:nConst
HessDual(iConst,jConst) = ...

- 2*real((varargin{1,3*(iConst-1)+1}*xOpt +...
varargin{1,3*(iConst-1)+2}/2)'* ...
mldivide(H,(varargin{1,3*(jConst-1)+1}*xOpt + ...
varargin{1,3*(jConst-1)+2}/2)));

end
end
HessDual = HessDual + HessDual.';
HessDual = HessDual - diag(diag(HessDual))/2;

p = - mldivide(HessDual,gradDual); % proposed Newton's shift

Program 17: Computation of Newton’s shift based on the gradient and Hessian
matrix of the dual function.

which ensures the positive definiteness of the new Hessian matrix. The dual

lambdaVec = lambdaVec + real(alpha*p); % proceed with the Newton's step

Program 18: Newton’s shift modified in length by a positive constant alpha
which enforces the new set of Lagrange multipliers to stay in the positive definite
region of the dual function.

function is evaluated in the next Newton’s method step as in Program 16. The
above procedure is repeated until the relative error between the actual value
and the last value of the dual function is smaller than a predefined toleration
or the maximum of the allowed iterations is reached.

G.2 Quadratic Objective Function and two or more
Quadratic Constraints, all without Linear Terms
(minAstBn)

A purely quadratic program with more than one purely quadratic constraint is
solved by the numerical maximization of the dual function (44).
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mat_symmetrization = @(M) 0.5*(M+M');
mat_transform = @(M) mat_symmetrization((cholFacB')\M/cholFacB);

Program 19: Matrix transformation and symmetrization.

To increase the efficiency of the code, all matrices are transformed

M̃ =
(
RH
)−1

MR−1, (70)

where R is the Cholesky factor to matrix B1,

B1 = RHR (71)

in Program 19. Then, the generalized eigenvalue problem (GEP) (43) is reduced
to the ordinary eigenvalue problem(

Ã−
m∑
i=2

µiB̃i

)
Y = λY, Ĩ = R−1Y. (72)

The enhancement is used in the dual problem implementation in Pro-
gram 20. Dual function is minimized numerically by the MATLABr function

function dP = dual_problem(mult)
%% dual function
% INPUTS
% mult: independent multipliers
% OUTPUTS
% dP: dual function value

sumM = A - sum_mat(mult);
[~, lam, nF] = eigs(sumM, 1, 'sr', opts);
if nF % eigs did not converge

Lam = eig(sumM);
lam = min(Lam);
if verbosity > 1

warning('Use of full eig, eigs did not converge.');
end

end
dP = -varargin{3}*lam; % dual function value
for indPar = 1:nPar

dP = dP - mult(indPar)*varargin{const_ind(con_ind(indPar))};
end
dMin = lam; % save to global variable

end

Program 20: Dual problem formulation. The matrices are summed together
with the given Lagrange multipliers. The desired eigenvalue is found (with
numerical problem treatment), the dual function is evaluated and saved in out-
put variable dP, the minimal eigenvalue is shared from this nested function by
variable dMin.
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[nuF, dualP] = fminsearch(@(mult) -dual_problem(mult), lambda(2:end),
options);

Program 21: Dual problem maximization.

fminsearch() in Program 21. If the eigenvalue is multiple, the symmetry
treatment is required to match the value of the primary problem to the value of
the dual problem, i.e., to close the fictitious dual gap [48]. The associated eigen-
vectors are linearly combined to minimize the norm of a vector whose elements
are the values of the constraints in Program 22.
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function [pP, I] = symmetry_correction()
%% symmetry correction
% OUTPUTS
% pP: primar problem value
% I: mixed final eigenvector

% initialization
mappedMatrices = nan(eigAlgebMultip, eigAlgebMultip, nConstr);
constraintVec = nan(nConstr, 1);

for iCon = 1:nConstr
% matrix mapping to eigenvector space
mappedMatrices(:,:, iCon) = IvecList' * varargin{mat_ind(iCon)} *

IvecList;
% constraint vector composition
constraintVec(iCon) = varargin{const_ind(iCon)};

end

aVecF = fminsearch(@(aVec) constraint_fitting(...
mappedMatrices, constraintVec, aVec), aVecF, conOpt);

% mixing final eigenvector
I = IvecList*aVecF;

% primar problem evaluation
pP = real(I'*A*I);

end

function val = constraint_fitting(mMat, conVec, aVec)
%% constraint fitting function
% INPUTS
% mMat: mapped constraint matrices
% [eigAlgMultip x eigAlgMultip x nconstr]
% conVec: vector of constraints constants
% aVec: mixing vector
% OUTPUTS
% val: matric of constraint fitting

for iConstr = 1:nConstr % constraint evaluation
conVec(iConstr) = conVec(iConstr) + aVec'*mMat(:,:, iConstr)*aVec;

end
val = norm(conVec); % fitting norm

end

Program 22: Symmetry treatment and constraint fitting is done by minimizing
the norm of error in the constraints.

33



References
[1] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vuckovic, and A. W. Ro-

driguez, “Inverse design in nanophotonics,” Nature Photonics, vol. 12,
no. 11, pp. 659–670, 2018.

[2] M. Capek, L. Jelinek, and M. Gustafsson, “Shape synthesis based on topol-
ogy sensitivity,” IEEE Trans. Antennas Propag., vol. 67, pp. 3889 – 3901,
June 2019.

[3] P. Garcia and J. Webb, “Optimization of planar devices by the finite ele-
ment method,” IEEE Transactions on Microwave Theory and Techniques,
vol. 38, no. 1, pp. 48–53, 1990.

[4] D. Walsh, C. Emson, and C. Riley, “Resonant cavity design using the finite
element method,” in Eur. Part. Acc. Conf., Sitges, 1996.

[5] M. Gustafsson, D. Tayli, C. Ehrenborg, M. Cismasu, and S. Norbedo, “An-
tenna current optimization using MATLAB and CVX,” FERMAT, vol. 15,
pp. 1–29, May–June 2016.

[6] M. Gustafsson, D. Tayli, and M. Cismasu, Physical bounds of antennas,
pp. 1–32. 2015.

[7] L. Jelinek and M. Capek, “Optimal currents on arbitrarily shaped surfaces,”
IEEE Trans. Antennas Propag., vol. 65, pp. 329–341, Jan. 2017.

[8] M. Capek, L. Jelinek, K. Schab, M. Gustafsson, B. L. G. Jonsson, F. Fer-
rero, and C. Ehrenborg, “Optimal planar electric dipole antennas: Search-
ing for antennas reaching the fundamental bounds on selected metrics,”
IEEE Antennas and Propagation Magazine, vol. 61, pp. 19–29, Aug. 2019.

[9] A. K. Skrivervik, M. Bosiljevac, and Z. Sipus, “Fundamental limits for
implanted antennas: Maximum power density reaching free space,” IEEE
Trans. Antennas Propag., vol. 67, pp. 4978 – 4988, August 2019.

[10] S. Molesky, P. Chao, W. Jin, and A. W. Rodriguez, “Global T operator
bounds on electromagnetic scattering: Upper bounds on far-field cross sec-
tions,” Physical Review Research, vol. 2, no. 3, 2020.

[11] P. S. Venkataram, S. Molesky, W. Jin, and A. W. Rodriguez, “Fundamental
limits to radiative heat transfer: The limited role of nanostructuring in the
near-field,” Physical Review Letters, vol. 124, jan 2020.

[12] Z. Kuang and O. D. Miller, “Computational bounds to light-matter interac-
tions via local conservation laws,” Physical Review Letters, vol. 125, no. 26,
2020.

[13] P. Chao, B. Strekha, R. K. Defo, S. Molesky, and A. W. Rodriguez, “Physi-
cal limits on electromagnetic response,” arXiv preprint arXiv: 2109.05667,
2021.

34



[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, Great
Britain: Cambridge University Press, 2004.

[15] M. Capek, M. Gustafsson, and K. Schab, “Minimization of antenna quality
factor,” IEEE Trans. Antennas Propag., vol. 65, pp. 4115–4123, Aug, 2017.

[16] M. Gustafsson and M. Capek, “Maximum gain, effective area, and directiv-
ity,” IEEE Trans. Antennas Propag., vol. 67, pp. 5282 – 5293, Aug. 2019.

[17] M. Gustafsson, M. Capek, and K. Schab, “Tradeoff between antenna effi-
ciency and Q-factor,” IEEE Trans. Antennas Propag., vol. 67, pp. 2482–
2493, April 2019.

[18] L. Jelinek, K. Schab, and M. Capek, “The radiation efficiency cost of reso-
nance tuning,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6716 –
6723, 2018.

[19] R. F. Harrington, “Antenna excitation for maximum gain,” IEEE Trans.
Antennas Propag., vol. 13, pp. 896–903, Nov. 1965.

[20] M. Gustafsson and S. Nordebo, “Optimal antenna currents for Q, superdi-
rectivity, and radiation patterns using convex optimization,” IEEE Trans.
Antennas Propag., vol. 61, pp. 1109–1118, Mar. 2013.

[21] S. Molesky, P. S. Venkataram, W. Jin, and A. W. Rodriguez, “Fundamental
limits to radiative heat transfer: Theory,” Physical Review B, vol. 101, jan
2020.

[22] M. Gustafsson, K. Schab, L. Jelinek, and M. Capek, “Upper bounds on
absorption and scattering,” New Journal of Physics, vol. 22, p. 073013, sep
2020.

[23] L. Jelinek, M. Gustafsson, M. Capek, and K. Schab, “Fundamental bounds
on the performance of monochromatic passive cloaks,” Optics Express,
vol. 29, no. 15, pp. 24068–24082, 2021.

[24] K. Schab, A. Rothschild, K. Nguyen, M. Capek, L. Jelinek, and M. Gustafs-
son, “Trade-offs in absorption and scattering by nanophotonic structures,”
Optics Express, vol. 28, pp. 36584–36599, 2020.

[25] R. F. Harrington, Field Computation by Moment Methods. Piscataway,
New Jersey, United States: Wiley – IEEE Press, 1993.

[26] W. C. Gibson, The Method of Moments in Electromagnetics. Chapman
and Hall/CRC, 2 ed., 2014.

[27] J.-M. Jin, Theory and Computation of Electromagnetic Fields. Wiley, 2010.

[28] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag., vol. 30,
pp. 409–418, May 1982.

35



[29] R. F. Harrington, “Matrix methods for field problems,” Proc. IEEE, vol. 55,
pp. 136–149, Feb. 1967.

[30] J. D. Jackson, Classical Electrodynamics. Wiley, 3 ed., 1998.

[31] A. Zangwill, Modern Electrodynamics. Cambridge University Press, 2012.

[32] K. Schab, L. Jelinek, M. Capek, C. Ehrenborg, D. Tayli, G. A. E. Van-
denbosch, and M. Gustafsson, “Energy stored by radiating systems,” IEEE
Access, vol. 6, pp. 10553–10568, 2018.

[33] M. Gustafsson, D. Tayli, and M. Cismasu, “Q factors for antennas in dis-
persive media,” 2014. eprint arXiv: 1408.6834.

[34] M. Capek and L. Jelinek, “Optimal composition of modal currents for min-
imal quality factor Q,” IEEE Trans. Antennas Propag., vol. 64, pp. 5230–
5242, Dec. 2016.

[35] A. Bloch, R. Medhurst, and S. Pool, “A new approach to the design of
superdirective aerial arrays,” Proc. IEE, vol. 100, no. 67, pp. 303–314, 1953.

[36] M. Capek, L. Jelinek, and M. Gustafsson, “Inversion-free evaluation of near-
est neighbors in method of moments,” IEEE Antennas Wireless Propag.
Lett., vol. 18, pp. 2311–2315, Apr. 2019.

[37] C. Tai, Dyadic green functions in electromagnetic theory. IEEE Press,
2nd ed., 1994.

[38] D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators
for negative permittivity metamaterials,” Applied Physics Letters, vol. 88,
no. 4, p. 041109, 2006.

[39] L. Jelinek, M. Capek, P. Hazdra, and J. Eichler, “An analytical evaluation of
the quality factorQZ for dominant spherical modes,” IET Microw. Antenna
P., vol. 9, no. 10, pp. 1096–1103, 2015.

[40] “Antenna Toolbox for MATLAB (AToM),” 2019.
www.antennatoolbox.com.

[41] W. C. Chew, M. S. Tong, and B. Hu, Integral Equation Methods for Elec-
tromagnetic and Elastic Waves. Morgan & Claypool, 2009.

[42] V. H. Rumsey, “Reaction concept in electromagnetic theory,” Phys. Rev.,
vol. 94, pp. 1483–1491, June 1954.

[43] T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in
Electromagnetics. IEE, 1995.

[44] L. J. Cohon, Multiobjective Programming and Planning. Academic Press,
1st ed., 1978.

36



[45] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms. New
York, United States: Wiley, 2001.

[46] G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimiza-
tion. Springer, 2008.

[47] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins
University Press, 2012.

[48] M. Capek, L. Jelinek, and M. Masek, “A role of symmetries in evaluation
of fundamental bounds,” IEEE Transactions on Antennas and Propagation
(Early Access), 2021.

37


	1 Introduction
	2 Time-Harmonic Metrics in Electromagnetism
	3 Examples
	3.1 Lower Bound on Q-Factor
	3.2 A Trade-Off Between Antenna Directivity, Dissipation Factor and Q-factor
	3.2.1 Minimum Dissipation Factor with Self-Resonant Constraint
	3.2.2 Pareto-Optimal Set of Dissipation and Q-factor with Self-Resonant Constraint
	3.2.3 Pareto-Optimal Set of Dissipation Factor, Q-factor, and Directivity with Self-Resonant Constraint

	3.3 Substructure Bounds

	4 Numerical Precision and Computational Efficiency
	5 AToM Package: Fundamental Bounds
	A Matrix Representation
	B Quadratically Constrained Quadratic Program
	C Flow Chart
	D Examples Implementation
	D.1 Lower Bound on Q-factor
	D.2 Lower Bound on Dissipation Factor
	D.3 Pareto-Optimal Set of the Dissipation factor and Q-factor
	D.4 Trade-off Beween Directivity, Dissipation factor and Q-factor
	D.5 Substructure Bounds

	E Multi-Objective Optimization and Pareto-Optimal Sets
	F Removal of an Affine Constraint
	G Implementation of QCQP Solvers
	G.1 Quadratic Objective Function and Quadratic Constraints with Linear Terms (QNCQPQuadLin)
	G.2 Quadratic Objective Function and two or more Quadratic Constraints, all without Linear Terms (minAstBn)


